1
|
Elrashedy A, Nayel M, Salama A, Zaghawa A, El-Shabasy RM, Hasan ME. Foot-and-mouth disease: genomic and proteomic structure, antigenic sites, serotype relationships, immune evasion, recent vaccine development strategies, and future perspectives. Vet Res 2025; 56:78. [PMID: 40197411 PMCID: PMC11974090 DOI: 10.1186/s13567-025-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/31/2024] [Indexed: 04/10/2025] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and transmissible disease that can have significant economic and trade repercussions during outbreaks. In Egypt, despite efforts to mitigate FMD through mandatory immunization, the disease continues to pose a threat due to the high genetic variability and quasi-species nature of the FMD virus (FMDV). Vaccines have been crucial in preventing and managing FMD, and ongoing research focusses on developing next-generation vaccines that could provide universal protection against all FMDV serotypes. This review thoroughly examines the genetic structure of FMDV, including its polyprotein cleavage process and the roles of its structural and non-structural proteins in immune evasion. Additionally, it explores topics such as antigenic sites, specific mutations, and serotype relationships from Egypt and Ethiopia, as well as the structural changes in FMDV serotypes for vaccine development. The review also addresses the challenges associated with creating effective vaccines for controlling FMD, particularly focusing on the epitope-based vaccine. Overall, this review offers valuable insights for researchers seeking to develop effective strategies and vaccines for controlling FMD.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
- Faculty of Health Science Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rehan M El-Shabasy
- Chemistry Department, The American University in Cairo, AUC Avenue, New Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - Mohamed E Hasan
- Faculty of Health Science Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
2
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
3
|
Medina GN, Spinard E, Azzinaro PA, Rodriguez-Calzada M, Gutkoska J, Kloc A, Rieder EA, Taillon BE, Mueller S, de Los Santos T, Segundo FDS. Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation. Viruses 2023; 15:1332. [PMID: 37376631 DOI: 10.3390/v15061332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is a highly contagious disease of cloven-hoofed livestock that can have severe economic impacts. Control and prevention strategies, including the development of improved vaccines, are urgently needed to effectively control FMD outbreaks in endemic settings. Previously, we employed two distinct strategies (codon pair bias deoptimization (CPD) and codon bias deoptimization (CD)) to deoptimize various regions of the FMDV serotype A subtype A12 genome, which resulted in the development of an attenuated virus in vitro and in vivo, inducing varying levels of humoral responses. In the current study, we examined the versatility of the system by using CPD applied to the P1 capsid coding region of FMDV serotype A subtype, A24, and another serotype, Asia1. Viruses carrying recoded P1 (A24-P1Deopt or Asia1-P1Deopt) exhibited different degrees of attenuation (i.e., delayed viral growth kinetics and replication) in cultured cells. Studies in vivo using a mouse model of FMD demonstrated that inoculation with the A24-P1Deopt and Asia1-P1Deopt strains elicited a strong humoral immune response capable of offering protection against challenge with homologous wildtype (WT) viruses. However, different results were obtained in pigs. While clear attenuation was detected for both the A24-P1Deopt and Asia1-P1Deopt strains, only a limited induction of adaptive immunity and protection against challenge was detected, depending on the inoculated dose and serotype deoptimized. Our work demonstrates that while CPD of the P1 coding region attenuates viral strains of multiple FMDV serotypes/subtypes, a thorough assessment of virulence and induction of adaptive immunity in the natural host is required in each case in order to finely adjust the degree of deoptimization required for attenuation without affecting the induction of protective adaptive immune responses.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Edward Spinard
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Paul A Azzinaro
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- ORISE-PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Joseph Gutkoska
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | - Anna Kloc
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT 06516, USA
| | - Elizabeth A Rieder
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
| | | | | | | | - Fayna Diaz-San Segundo
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY 11944, USA
- National Institute of Health, NIAID, DMID, OBRRTR, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Evaluation and Determination of a Suitable Passage Number of Codon Pair Deoptimized PRRSV-1 Vaccine Candidate in Pigs. Viruses 2023; 15:v15051071. [PMID: 37243157 DOI: 10.3390/v15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is major economic problem given its effects on swine health and productivity. Therefore, we evaluated the genetic stability of a codon pair de-optimized (CPD) PRRSV, E38-ORF7 CPD, as well as the master seed passage threshold that elicited an effective immune response in pigs against heterologous virus challenge. The genetic stability and immune response of every 10th passage (out of 40) of E38-ORF7 CPD was analyzed through whole genome sequencing and inoculation in 3-week-old pigs. E38-ORF7 CPD passages were limited to 20 based on the full-length mutation analysis and animal test results. After 20 passages, the virus could not induce antibodies to provide effective immunity and mutations accumulated in the gene, which differed from the CPD gene, presenting a reason for low infectivity. Conclusively, the optimal passage number of E38-ORF7 CPD is 20. As a vaccine, this may help overcome the highly diverse PRRSV infection with substantially enhanced genetic stability.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sun-Hee Cho
- Department of Animal Veterinary Development, BioPOA, Hwaseong-si 18469, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
5
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Codon Pair Deoptimization (CPD)-Attenuated PRRSV-1 Vaccination Exhibit Immunity to Virulent PRRSV Challenge in Pigs. Vaccines (Basel) 2023; 11:vaccines11040777. [PMID: 37112689 PMCID: PMC10144691 DOI: 10.3390/vaccines11040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Commercially used porcine respiratory and reproductive syndrome (PRRS) modified live virus (MLV) vaccines provide limited protection with heterologous viruses, can revert back to a virulent form and they tend to recombine with circulating wild-type strains. Codon pair deoptimization (CPD) is an advanced method to attenuate a virus that overcomes the disadvantages of MLV vaccines and is effective in various virus vaccine models. The CPD vaccine against PRRSV-2 was successfully tested in our previous study. The co-existence of PRRSV-1 and -2 in the same herd demands protective immunity against both viruses. In this study, live attenuated PRRSV-1 was constructed by recoding 22 base pairs in the ORF7 gene of the E38 strain. The efficacy and safety of the CPD live attenuated vaccine E38-ORF7 CPD to protect against virulent PRRSV-1 were evaluated. Viral load, and respiratory and lung lesion scores were significantly reduced in animals vaccinated with E38-ORF7 CPD. Vaccinated animals were seropositive by 14 days post-vaccination with an increased level of interferon-γ secreting cells. In conclusion, the codon-pair-deoptimized vaccine was easily attenuated and displayed protective immunity against virulent heterologous PRRSV-1.
Collapse
|
6
|
Evaluation of Potential In Vitro Recombination Events in Codon Deoptimized FMDV Strains. Viruses 2023; 15:v15030670. [PMID: 36992379 PMCID: PMC10052203 DOI: 10.3390/v15030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Codon deoptimization (CD) has been recently used as a possible strategy to derive foot-and-mouth disease (FMD) live-attenuated vaccine (LAV) candidates containing DIVA markers. However, reversion to virulence, or loss of DIVA, from possible recombination with wild-type (WT) strains has yet to be analyzed. An in vitro assay was developed to quantitate the levels of recombination between WT and a prospective A24-P2P3 partially deoptimized LAV candidate. By using two genetically engineered non-infectious RNA templates, we demonstrate that recombination can occur within non-deoptimized viral genomic regions (i.e., 3′end of P3 region). The sequencing of single plaque recombinants revealed a variety of genome compositions, including full-length WT sequences at the consensus level and deoptimized sequences at the sub-consensus/consensus level within the 3′end of the P3 region. Notably, after further passage, two recombinants that contained deoptimized sequences evolved to WT. Overall, recombinants featuring large stretches of CD or DIVA markers were less fit than WT viruses. Our results indicate that the developed assay is a powerful tool to evaluate the recombination of FMDV genomes in vitro and should contribute to the improved design of FMDV codon deoptimized LAV candidates.
Collapse
|
7
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|