1
|
Wang X, Lu K, Li W, Chen J, Yin Y, Sun X, Lu M, He J. Guiding chili variety selection for Zao chili in Guizhou: Based on a systematic study of sensory, physicochemical, and volatile characteristics. Food Chem X 2025; 26:102210. [PMID: 40207293 PMCID: PMC11979401 DOI: 10.1016/j.fochx.2025.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 04/11/2025] Open
Abstract
This work investigated the influence of seven chili varieties in Guizhou on the quality of Zao Chili (ZC), a local traditional fermented chili product. The physical and chemical indicators, volatile components, and product quality of the seven chili varieties and the ZCs were analyzed. Significant differences in physical and chemical properties among the chili varieties substantially affected the quality of ZCs. Chaotian chilies are harder and spicier, have a higher seed/skin ratio and crude fibre content, and lower fruit weight, water content, and reducing sugar content than Erjingtiao chilies. The Erjingtiao chili FQB3 had the highest reducing sugar content (55.296 g/100 g). The ZC produced by FQB3 had the highest comprehensive sensory score (89.7), characterized by high total acid and amino acid nitrogen content and low crude fibre content. There were 181 volatile compounds in the ZCs, including 32 common compounds and 79 differential compounds. More volatile compounds were found in the ZC derived from Erjingtiao chili. The results combined with the OAV analysis indicated that the aroma profile of ZC could be classified into six attributes, comprising 14 key substances, such as β-damascenone and benzaldehyde. In conclusion, the Erjingtiao chili fulfils ZC's processing requirements. These results will serve as a guide in the assessment of ZC quality, the selection of chili processing varieties, and the stabilization of product quality.
Collapse
Affiliation(s)
- Xueya Wang
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Kuan Lu
- Guizhou Biotechnology Research and Development Base Co., Ltd., Guizhou, Guiyang 550014, China
| | - Wenxin Li
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ju Chen
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yong Yin
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaojing Sun
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Min Lu
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jianwen He
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
2
|
Niu C, Liu Y, Li H, Liu C, Li Q. Biochemical and chemosensory characterization of doubanjiang fermented via two-stage controlled temperature. Food Chem 2024; 461:140846. [PMID: 39151351 DOI: 10.1016/j.foodchem.2024.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to elaborate the biochemical and chemosensory characteristics of doubanjiang fermentation via a two-stage controlled temperature. HL group with variable temperature (40 °C → 30 °C) and NTF group fermented following traditional technique were prepared and their volatile and non-volatile metabolites were compared through multivariate statistical analysis. HL group favored the accumulation of amino acid nitrogen, free amino acids and organic acids in the early stage and maintained adequate total acids and biogenic amines in the mid-late stage. HL group also had preferred jiang and fruity flavor through sensory evaluation. A total of 116 volatile metabolites were identified in HL or NTF groups and 22 marker volatile metabolites were screened through the combinational use of OPLS-DA and Random Forest analysis. Stronger anti-oxidant ability was observed in HL group while adequate number of acidic compounds and biogenic amines were ensured. This indicated that the two-stage controlled temperature fermentation was beneficial for doubanjiang fermentation.
Collapse
Affiliation(s)
- Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yiyang Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- Sichuan Revitalization Industrial Technology Research Institute Co., Ltd, Chengdu 610015, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Lee HY, Park YM, Shin DY, Hwang HM, Jeong H, Jeong SJ, Yang HJ, Ryu MS, Seo JW, Jeong DY, Kim BS, Kim JG. Gochujang, a traditional Korean fermented food, protects through suppressed inflammatory pathways and histological structure disruption in dextran sodium sulfate (DSS)-induced colitis mice. Heliyon 2024; 10:e27383. [PMID: 38515681 PMCID: PMC10955233 DOI: 10.1016/j.heliyon.2024.e27383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
The mechanisms underlying chronic inflammatory diseases remain unclear. Therefore, researchers have explored the mechanisms underlying colitis using diverse materials. Recently, there has been an increasing interest in fermented products and bioconversion materials, their potential efficacy is being actively studied. Gochujang, a traditional Korean fermented product, is crafted by blending fermented Meju powder, gochu (Korean chili) powder, glutinous rice, and salt. In our study, we explored the effectiveness of Gochujang (500 mg/kg; Cheongju and Hongcheon, Korea) in dextran sulfate sodium (DSS)-induced colitis mice model. Gochujang was orally administered for 2 weeks, followed by the induction of colitis using 3% DSS in the previous week. During our investigation, Gochujang variants (TCG22-25, Cheongju and TCG22-48, Hongcheon) did not exhibit significant inhibition of weight reduction (p = 0.061) but notably (p = 0.001) suppressed the reduction in large intestine length in DSS-induced colitis mice. In the serum from colitis mice, TCG22-48 demonstrated reduced levels of the inflammatory cytokines interleukin (IL)-6 (p = 0.001) and tumor necrosis factor (TNF)-α (p = 0.001). Additionally, it inhibited the phosphorylation of Erk (p = 0.028), p38, and NF-κB (p = 0.001) the inflammatory mechanism. In our study, TCG22-25 demonstrated a reduction in the IL-6 level (p = 0.001) in serum and inhibited the phosphorylation of p38 and NF-κB (p = 0.001). Histological analysis revealed a significant (p = 0.001) reduction in the pathological score of the large intestine from TCG22-25 and TCG22-48. In conclusion, the intake of Gochujang demonstrates potent anti-inflammatory effects, mitigating colitis by preventing the large intestine length reduction of animals with colitis, lowering serum levels of TNF-α and IL-6 cytokines, and inhibiting histological disruption and inflammatory mechanism phosphorylation.
Collapse
Affiliation(s)
- Hak Yong Lee
- Invivo Co., Ltd., 121, Deahak-ro, Seongbuk-gu, Nonsan, 32992, South Korea
| | - Young Mi Park
- Invivo Co., Ltd., 121, Deahak-ro, Seongbuk-gu, Nonsan, 32992, South Korea
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Dong Yeop Shin
- Invivo Co., Ltd., 121, Deahak-ro, Seongbuk-gu, Nonsan, 32992, South Korea
- Department of Integrated Life Science and Technology, Kongju National University, 32439, South Korea
| | - Hai Min Hwang
- Invivo Co., Ltd., 121, Deahak-ro, Seongbuk-gu, Nonsan, 32992, South Korea
| | - Hanna Jeong
- Invivo Co., Ltd., 121, Deahak-ro, Seongbuk-gu, Nonsan, 32992, South Korea
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, South Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, South Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, South Korea
| | - Ji Won Seo
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048, South Korea
| | - Byeong Soo Kim
- Department of Integrated Life Science and Technology, Kongju National University, 32439, South Korea
| | - Jae Gon Kim
- Invivo Co., Ltd., 121, Deahak-ro, Seongbuk-gu, Nonsan, 32992, South Korea
| |
Collapse
|
4
|
Zhang X, Zhang Y, Wang L, Li W, Hou L. Identification and control of gas-producing bacteria isolated from the swollen bagged soy sauce. Int J Food Microbiol 2023; 407:110396. [PMID: 37734207 DOI: 10.1016/j.ijfoodmicro.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
The swelling of soy sauce bags seriously affects product quality and causes food safety problems, which has become an urgent problem to solve in the condiment industry. Here, gas-producing bacteria in the swollen bagged soy sauce were isolated and identified to provide an effective control method for inhibiting their growth and solving the swelling of soy sauce bags. It was found that three gas-producing bacteria isolated from the swollen bagged soy sauce were confirmed as Bacillus amyloliquefaciens (G1), Bacillus sp. (G2) and Bacillus subtilis (P3) using 16S rDNA analysis. The strains' morphologies, growth rates, and physiological and biochemical characteristics were also compared. Further studies yielded the optimal growth time, temperature and pH for the three gas-producing bacteria (B. amyloliquefacien: 24 h, 37 °C, and pH 7; Bacillus sp.: 18 h, 30 °C, and pH 6.5-7.5; B. subtilis: 36 h, 30 °C, and pH 8). Bacillus sp. was more salt tolerant than the other two. Then the antibacterial effect of the combination was tested by the physicochemical index. The results showed that filtering through a 0.22 μm inorganic micro-filtration membrane, sterilizing at 121 °C for 2 min, and adding 1 g/kg potassium sorbate was effective methods to inhibit three gas-producing bacteria and control the swelling of soy sauce.
Collapse
Affiliation(s)
- Xiangdi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology. No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Yuxiu Zhang
- Tianjin Agricultural Center of Eco-Environment Monitoring and Agro-Product Quality Testing, No. 50th Xihu Road, Nankai District, Tianjin 300193, China
| | - Lingling Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology. No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Wanning Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology. No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology. No. 29, 13th. Avenue, Tianjin Economic and Technological, Tianjin 300457, China.
| |
Collapse
|
5
|
Niu C, Xing X, Wang Y, Li X, Zheng F, Liu C, Wang J, Li Q. Characterization of color, metabolites and microbial community dynamics of doubanjiang during constant temperature fermentation. Food Res Int 2023; 174:113554. [PMID: 37986515 DOI: 10.1016/j.foodres.2023.113554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to elaborate the effect of temperature on doubanjiang fermentation. Two batches of constant-temperature groups were prepared and their physicochemical parameters, color formation, metabolites and microbial community dynamics during fermentation were determined and compared with those of natural temperature fermentation group. The results showed that fermentation at 40 °C could accelerate the accumulation of amino nitrogen, reducing sugar, amino acids, organic acids and various volatile metabolites while it was able to inhibit the growth of conditionally pathogenic bacteria, such as Klebsiella and Salmonella. However, high concentrations of total acids and biogenic amines, protrusive burnt flavor and darker color were observed in constant temperature fermentation, which were unfavorable for doubanjiang quality. Higher fermentation temperature lowered the diversity of bacterial community and favored the growth of Bacillus genus. The correlation between key microbial genera and doubanjiang quality indexes were significantly different among different temperatures. This study would deep our understanding of the roles of temperature ondoubanjiangfermentation.
Collapse
Affiliation(s)
- Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianlei Xing
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yiheng Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyang Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Çelik Doğan C, Yüksel Dolgun HT, İkiz S, Kırkan Ş, Parın U. Detection of the Microbial Composition of Some Commercial Fermented Liquid Products via Metagenomic Analysis. Foods 2023; 12:3538. [PMID: 37835192 PMCID: PMC10572611 DOI: 10.3390/foods12193538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The fermented liquid sector is developing all over the world due to its contribution to health. Our study has contributed to the debate about whether industrially manufactured fermented liquids live up to their claims by analyzing pathogens and beneficial bacteria using a 16S rRNA sequencing technique called metagenomic analysis. Paenibacillus, Lentibacillus, Bacillus, Enterococcus, Levilactobacillus, and Oenococcus were the most abundant bacterial genera observed as potential probiotics. Pseudomonas stutzeri, Acinetobacter, and Collimonas, which have plant-growth-promoting traits, were also detected. The fact that we encounter biocontroller bacteria that promote plant growth demonstrates that these organisms are widely used in foods and emphasizes the necessity of evaluating them in terms of public health. Their potential applications in agriculture may pose a danger to food hygiene and human health in the long term, so our data suggest that this should be evaluated.
Collapse
Affiliation(s)
- Cansu Çelik Doğan
- Food Technology Program, Food Processing Department, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye
| | - Hafize Tuğba Yüksel Dolgun
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| | - Serkan İkiz
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye;
| | - Şükrü Kırkan
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| | - Uğur Parın
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| |
Collapse
|
7
|
Shi B, Moon B. Monitoring and risk assessment of biogenic amines in Korean commercial fermented seasonings. Heliyon 2023; 9:e18906. [PMID: 37588612 PMCID: PMC10425890 DOI: 10.1016/j.heliyon.2023.e18906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Fermented seasonings are widely used in Korean cuisine; however, some contain high levels of biogenic amines (BAs). In this study, in order to estimate the potential BA risk from fermented seasoning, the BA contents in 50 commercial brands (n = 292) of five seasonings (soy sauce, Gochujang, Doenjang, Ssamjang, and Cheonggukjang) and their changes due to different cooking methods were evaluated by high-performance liquid chromatography. The risk assessment for consumer exposure was evaluated by computing the estimated daily intake (EDI), histamine (HIS) intake, and tyramine (TYR) intake. Maximum contents of HIS detected in Cheonggukjang, soy sauce, Doenjang, and Ssamjang were 318.46, 148.15, 123.65, and 114.07 mg/kg, respectively. However, even in the worst-case scenario, the EDI value and HIS intake results demonstrated that the seasonings had a limited impact on the risk of HIS poisoning due to their low consumption. Cheonggukjang exhibited the highest TYR content (312.89 mg/kg), and the TYR exposure results implied that those taking classical antidepressant monoamine oxidase inhibitors should pay attention to Cheonggukjang. After stir-frying, the total BA retentions in soy sauce and Gochujang were only 51.45% and 57.08%, respectively, which may be caused by high temperature. Based on the results of this study, the five seasonings contained various BAs, which can be influenced by the cooking process, and all five seasonings are safe for the general population in terms of the risk of BAs.
Collapse
Affiliation(s)
- BaoZhu Shi
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi, 17546, Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi, 17546, Republic of Korea
| |
Collapse
|
8
|
Study on the quality formation mechanism of Zao chili with enhanced fermentation by Lactipllantbacillus plantarum 5-1. Food Chem X 2023; 17:100626. [PMID: 36974175 PMCID: PMC10039268 DOI: 10.1016/j.fochx.2023.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Zao Chili (ZC) is a traditional fermented pepper, which plays an important role in Chinese cooking. The aim of this study was to elucidate the effect of Lactipllantbacillus plantarum 5-1 on the physicochemical properties, metabolite and microbiota profiling of ZC. The physicochemical factors changed regularly with the fermentation time. In the microbial communities, Lactobacillus, Weissella, Enterobacter, Gibberella, Fusarium, Zygosaccharomyces and Pichia were the dominant genera. 7 kinds of organic acids were detected in the whole fermentation process of ZC, but only 5 kinds changed significantly. Based on the OPLS-DA model with VIP > 1 and ANOVA with P < 0.05, 33 volatile flavor compounds with significant differences were screened out of 89. According to the redundancy analysis (RDA), fungi mainly contributed to soluble solids, while bacteria mainly contributed to pH. Lactobacillus, Weissella, Enterbacter and Zygosaccharomyces may be the potential flavor contributing microorganisms in the fermentation process of ZC by the Spearman correlation coefficient. A total of 11 main metabolic pathways were obtained by KEGG enrichment analysis of 89 volatile flavor compounds and 7 organic acids. Therefore, this study further enhanced our understanding of the flavor quality formation mechanism of Lactipllantbacillus plantarum in ZC, and providing a theoretical basis for improving the flavor quality of ZC.
Collapse
|
9
|
Lee W, Kim MH, Park J, Kim YJ, Kim E, Heo EJ, Kim SH, Kim G, Shin H, Kim SH, Kim HY. Seasonal Changes in the Microbial Communities on Lettuce ( Lactuca sativa L.) in Chungcheong-do, South Korea. J Microbiol Biotechnol 2023; 33:219-227. [PMID: 36524338 PMCID: PMC9998205 DOI: 10.4014/jmb.2210.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Hee Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Juyeon Park
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - You Jin Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Jeong Heo
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Gyungcheon Kim
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
10
|
Ramalingam S, Bahuguna A, Joe AR, Lim S, Lee JS, Kim SY, Kim M. Correlation between the microbiome and pack burst spoilage of Allium sativum supplemented fermented hot pepper paste. Int J Food Microbiol 2023; 387:110046. [PMID: 36521240 DOI: 10.1016/j.ijfoodmicro.2022.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Gochujang (fermented hot pepper paste) products are well known for their distinct, spicy flavor. However, frequent pack burst spoilage of gochujang products occurs during transportation and storage because of microbial aerogenesis, resulting in considerable economic losses. The present study aimed to prevent pack burst spoilage of gochujang products by supplementing them with garlic ethanol extract. A simulated pack burst experiment revealed that 42.86 % of normal gochujang products were spoiled. Garlic ethanol extract significantly inhibited the growth of Zygosaccharomyces rouxii in gochujang products, with low minimum inhibitory concentration values (12.5-25 mg/mL). Gochujang products supplemented with various concentrations (1 % and 2.5 %) of garlic ethanol extract exhibited marked inhibition of microbial growth, particularly Z. rouxii, and pack burst spoilage. Microbiome analysis revealed that the pack burst samples harbored a high abundance of Z. rouxii. Supplementation of gochujang with 1 % garlic ethanol extract drastically reduced Z. rouxii abundance and prevented pack burst. Moreover, gochujang products supplemented with 1 % garlic ethanol extract exhibited a high hedonic score in the sensory analysis. Based on the results of this study, we concluded that supplementation of gochujang products with 1 % garlic ethanol extract before packaging could be effective in preventing pack burst spoilage of gochujang.
Collapse
Affiliation(s)
- Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Ah-Ryeong Joe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - SeMi Lim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Jong Suk Lee
- Division of Food & Nutrition and Cook, Taegu Science University, Daegu 41453, Republic of Korea.
| | - So-Young Kim
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
11
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
12
|
Kim DY, Kim JH, Shin HS. Improving the quality of fermented soybean products using low-frequency airborne ultrasonicated Koji. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Xiao L, Lapu M, Kang S, Jiang P, Li J, Liu Y, Liu D, Liu M. Effects of Tartary buckwheat on physicochemical properties and microbial community of low salt natural fermented soybean paste. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Systematic analysis of the aroma profiles produced by Zygosaccharomyces rouxii Y-8 in different environmental conditions and its contribution to doubanjiang (broad bean paste) fermentation with different salinity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Physicochemical, Microbial, and Volatile Compound Characteristics of Gochujang, Fermented Red Pepper Paste, Produced by Traditional Cottage Industries. Foods 2022; 11:foods11030375. [PMID: 35159525 PMCID: PMC8834593 DOI: 10.3390/foods11030375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Gochujang, fermented red pepper paste, is a grain-based Korean traditional food. The quality of gochujang produced by cottage industries is not well-documented. Thus, the present study aimed to analyze the quality of gochujang from 35 traditional cottage industries for physicochemical and microbial characteristics, along with volatile compound contents. In addition to microbial characteristics, salinity, pH, free amino nitrogen, and alcohol content were evaluated. Ethanol was detected as the predominant alcohol and 57% of tested gochujang products harbored >1% of total alcohol content, which was above the recommended level for halal products. Gochujang products contained hexadecanoic and linoleic acids predominantly and several volatile compounds belonging to the classes of alcohols, aldehydes, alkanes, nitrogen-containing compounds, and terpenes. A wide range of aerobic mesophilic bacteria (2.79–8.73 log CFU/g) and yeast counts (1.56–7.15 log CFU/g) was observed. Five distinct yeast species were identified, including Zygosaccharomyces rouxii. Eight gochujang products were found to be contaminated with Bacillus cereus (>4 log CFU/g). This study suggests that there is a need to limit B. cereus contamination in cottage industry products and reduce alcohol content to comply with halal food guidelines.
Collapse
|
16
|
Fan X, Li X, Zhang T, Guo Y, Shi Z, Wu Z, Zeng X, Pan D. Novel Millet-Based Flavored Yogurt Enriched With Superoxide Dismutase. Front Nutr 2022; 8:791886. [PMID: 35059425 PMCID: PMC8764191 DOI: 10.3389/fnut.2021.791886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Superoxide dismutase (SOD) is an important antioxidant enzyme with different physiological functions, which can be used as a nutritional fortifier in food. Cereal-based fermented products are becoming popular worldwide. In this study, novel millet-based flavored yogurt enriched with SOD was developed. Lactiplantibacillus plantarum subsp. plantarum was screened, which manufactured SOD activity of 2476.21 ± 1.52 U g-1. The SOD content of millet yogurt was 19.827 ± 0.323 U mL-1, which was 63.01, 50.11, and 146.79% higher than that of Bright Dairy Yogurt 1911, Junlebao and Nanjing Weigang, respectively. Fifty-four volatile flavor substances and 22,571 non-volatile flavor substances were found in yogurt. Compared to traditional fermented yogurt, 37 non-volatile metabolites in yogurt with millet enzymatic fermentation broth were significantly upregulated, including 2-phenyl ethanol, hesperidin, N-acetylornithine and L-methionine, which were upregulated by 3169.6, 228.36, 271.22, and 55.67 times, respectively, thereby enriching the sensory and nutritional value of yogurt. Moreover, the manufacture of unpleasant volatile flavor substances was masked, making the product more compatible with consumers' tastes.
Collapse
Affiliation(s)
- Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Xiefei Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Tao Zhang
- School of Food Science and Pharamaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuxing Guo
- School of Food Science and Pharamaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zihang Shi
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Lee W, Choi HJ, Zin H, Kim E, Yang SM, Hwang J, Kwak HS, Kim SH, Kim HY. Effect of Enterotoxigenic Escherichia coli on Microbial Communities during Kimchi Fermentation. J Microbiol Biotechnol 2021; 31:1552-1558. [PMID: 34489379 PMCID: PMC9705866 DOI: 10.4014/jmb.2108.08038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The diverse microbial communities in kimchi are dependent on fermentation period and temperature. Here, we investigated the effect of enterotoxigenic Escherichia coli (ETEC) during the fermentation of kimchi at two temperatures using high-throughput sequencing. There were no differences in pH between the control group, samples not inoculated with ETEC, and the ETEC group, samples inoculated with ETEC MFDS 1009477. The pH of the two groups, which were fermented at 10 and 25°C, decreased rapidly at the beginning of fermentation and then reached pH 3.96 and pH 3.62. In both groups, the genera Lactobacillus, Leuconostoc, and Weissella were predominant. Our result suggests that microbial communities during kimchi fermentation may be affected by the fermentation parameters, such as temperature and period, and not enterotoxigenic E. coli (ETEC).
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyo Ju Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyunwoo Zin
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinhee Hwang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyo-Sun Kwak
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Corresponding authors S.H. Kim E-mail:
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea,
H.Y. Kim Phone: +82-31-201-2123 Fax: +82-31-204-8116 E-mail:
| |
Collapse
|
18
|
Ha G, Yang HJ, Ryu MS, Jeong SJ, Jeong DY, Park S. Bacterial Community and Anti-Cerebrovascular Disease-Related Bacillus Species Isolated from Traditionally Made Kochujang from Different Provinces of Korea. Microorganisms 2021; 9:microorganisms9112238. [PMID: 34835364 PMCID: PMC8618569 DOI: 10.3390/microorganisms9112238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Traditionally made Kochujang (TMK) is a long-term fermented soybean and rice mixture with red pepper and salts. The ambient bacteria in rice straw and nutrient components of Kochujang influence the bacteria community. We aimed to investigate the bacterial composition and quality of TMK from different provinces of Korea: Chungcheung (CC), Jeolla (JL), Kyungsang (KS), and GeongGee plus Kangwon (GK) provinces, and Jeju island (JJ). Furthermore, Bacillus spp. isolated from TMK were studied to have anti-cerebrovascular disease activity and probiotic properties. Seventy-three TMK samples from different regions were collected to assess the biogenic amine contents, bacteria composition using next-generation methods, and bacterial functions using Picrust2. Bacillus spp. was isolated from the collected TMK, and their antioxidant, fibrinolytic, and angiotensin I conversion enzyme (ACE) inhibitory activities and probiotic properties were examined. KS TMK had lower sodium contents than the other TMK. There were no significant differences in histamine and tyramine contents among the TMK samples in different provinces. The predominant bacteria in TMK was Bacillus spp., but KS included much less Bacillus spp. and higher Enterococcus and Staphylococcus than the other TMK. Gene expression related to lipopolysaccharide biosynthesis was higher in KS TMK than the other TMK in Picrust2. The predominant Bacillus spp. isolated from TMK was B. subtilis and B. velezensis. B. subtilis SRCM117233, SRCM117245, and SRCM117253 had antioxidant activity, whereas B. subtilis had higher fibrinolytic activity than other Bacillus spp. Only B. velezensis SRCM117254, SRCM117311, SRCM117314, and SRCM117318 had over 10% ACE inhibitory activity. In conclusion, KS had less Bacillus related to lower sodium contents than the other TMK. The specific strains of B. subtilis and B. velezensis had antioxidant, fibrinolytic, and ACE inhibitory activity, and they can be used as a starter culture to produce better quality controlled Kochujang with anti-cerebrovascular disease activities.
Collapse
Affiliation(s)
- Gwangsu Ha
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Hee-Jong Yang
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Myeong-Seon Ryu
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Su-Ji Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Do-Youn Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
- Correspondence: (D.-Y.J.); (S.P.)
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
- Correspondence: (D.-Y.J.); (S.P.)
| |
Collapse
|
19
|
Quantification of Biogenic Amines in 35 Korean Cottage Industry Traditional Gochujang (Fermented Red Pepper Paste) Products. Foods 2021; 10:foods10102370. [PMID: 34681419 PMCID: PMC8535449 DOI: 10.3390/foods10102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Traditional gochujang is well known for its distinguished flavor and taste. However, the safety of cottage industry gochujang products is uncertain, particularly, in terms of biogenic amine (BA) content which is not yet documented. The present study aimed to determine the level of BAs present in 35 traditional gochujang products nationwide. All gochujang products had considerable amounts of total BAs ranging from 52.95 mg/kg to 176.24 mg/kg. Individually, histamine and tyramine were either not detected or detected up to 16.94 mg/kg and 2.15–52.34 mg/kg, respectively. In all the tested gochujang products, putrescine, spermidine, and spermine were detected in the range of 7.60–56.72 mg/kg, 14.96–36.93 mg/kg, and 4.68–16.31 mg/kg, respectively. A total of 22 and 19 gochujang products had less than 1 mg/kg of cadaverine and histamine, respectively. The findings indicate that all the gochujang products tested herein had BA levels below the suggested toxicity limits recommended by the various regulatory authorities, which reveal that they are safe for human consumption.
Collapse
|
20
|
Ryu JA, Kim E, Yang SM, Lee S, Yoon SR, Jang KS, Kim HY. High-throughput sequencing of the microbial community associated with the physicochemical properties of meju (dried fermented soybean) and doenjang (traditional Korean fermented soybean paste). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Protective Effect of Gochujang on Inflammation in a DSS-Induced Colitis Rat Model. Foods 2021; 10:foods10051072. [PMID: 34066160 PMCID: PMC8150376 DOI: 10.3390/foods10051072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Gochujang is a traditional Korean fermented soy-based spicy paste made of meju (fermented soybean), red pepper powder, glutinous rice, and salt. This study investigated the anti-inflammatory effects of Gochujang containing salt in DSS-induced colitis. Sprague-Dawley (SD) rats were partitioned into five groups: normal control, DSS control, DSS + salt, DSS + mesalamine, and DSS + Gochujang groups. They were tested for 14 days. Gochujang improved the disease activity index (DAI), colon weight/length ratio, and colon histomorphology, with outcomes similar to results of mesalamine administration. Moreover, Gochujang decreased the serum levels of IL-1β and IL-6 and inhibited TNF-α, IL-6, and IL-1β mRNA expression in the colon. Gochujang downregulated the expression of iNOS and COX-2 and decreased the activation of NF-κB in the colon. Gochujang induced significant modulation in gut microbiota by significantly increasing the number of Akkermansia muciniphila while decreasing the numbers of Enterococcus faecalis and Staphylococcus sciuri. However, compared with the DSS group, the salt group did not significantly change the symptoms of colitis or cytokine levels in serum and colon. Moreover, the salt group significantly decreased the gut microflora diversity. Gochujang mitigated DSS-induced colitis in rats by modulating inflammatory factors and the composition of gut microflora, unlike the intake of salt alone.
Collapse
|
22
|
Kim E, Yang SM, Kim HY. Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS. Foods 2021; 10:foods10051068. [PMID: 34066045 PMCID: PMC8151656 DOI: 10.3390/foods10051068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/31/2022] Open
Abstract
Kimchi, a traditional Korean fermented vegetable, has received considerable attention for its health-promoting effects. This study analyzes the cultivable microbial community in kimchi fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to comprehensively understand the factors affecting the quality of kimchi. Of the 5204 strains isolated from kimchi, aligned with the in-house database, 4467 (85.8%) were correctly identified at the species level. The fermentation temperature affected the microbial community by varying the pH and acidity, which was mainly caused by temperature-dependent competition between the different lactic acid bacteria (LAB) species in kimchi. LAB, such as Levilactobacillus (Lb.) brevis and Lactiplantibacillus (Lpb.) plantarum associated with rancidity and tissue softening, proliferated faster at higher temperatures than at low temperature. In addition, LAB, such as Latilactobacillus (Lat.) sakei and Leuconostoc (Leu.) mesenteroides, which produce beneficial substances and flavor, were mainly distributed in kimchi fermented at 4 °C. This study shows as a novelty that MALDI-TOF MS is a robust and economically affordable method for investigating viable microbial communities in kimchi.
Collapse
Affiliation(s)
| | | | - Hae-Yeong Kim
- Correspondence: ; Tel.: +82-31-201-2600; Fax: +82-31-204-8116
| |
Collapse
|