1
|
Ramírez-Camejo LA, Rodríguez C, Florez-Buitrago X. Phytopathogenic fungi and oomycetes causing diseases in Theobroma cacao: Chemical and genetic features. Fungal Biol 2025; 129:101551. [PMID: 40222758 DOI: 10.1016/j.funbio.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 04/15/2025]
Abstract
Phytopathogenic fungi (PF) and oomycetes (Oo) represent some of the most significant plant pathogens globally, causing extensive damage and economic losses in the chocolate tree, Theobroma cacao. This review aims to elucidate the molecular mechanisms behind cacao-PF/Oo interactions, with a particular emphasis on virulence factors. Despite their importance, the secondary metabolites (SMs) produced during controlled interactions between PF, Oo, and T. cacao remain underexplored. We have conducted a comprehensive review of the most critical PF and Oo species that infect T. cacao and highlighted the agricultural relevance of their SM chemistry. This investigation analyzes peer-reviewed papers from electronic databases PubMed, MDPI, ScienceDirect, Google Scholar, and SCOPUS. Through this analysis, we identify gaps in the current understanding and propose potential directions for future research. This includes a deeper investigation into the role of SMs in pathogen virulence, which could inform the development of more effective disease management strategies.
Collapse
Affiliation(s)
- Luis A Ramírez-Camejo
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama; Estación Científica COIBA AIP, Building 145, City of Knowledge, Clayton, Panama.
| | - Candelario Rodríguez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama; Estación Científica COIBA AIP, Building 145, City of Knowledge, Clayton, Panama
| | - Ximena Florez-Buitrago
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne-de-Bellevue, Québec, Canada, H9X 3V9
| |
Collapse
|
2
|
Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy Z, Baharuddin B, Bakonyi J, Broders K, Cacciola S, Chang TT, Chi N, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu CH, Garcia L, Hieno A, Ho HH, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira L, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu P, Tomić Z, Tomšovský M, Uematsu S, Webber J, Zeng HC, Zheng FC, Brasier C, Horta Jung M. Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Stud Mycol 2024; 107:251-388. [PMID: 38600961 PMCID: PMC11003442 DOI: 10.3114/sim.2024.107.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 04/12/2024] Open
Abstract
During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenković, Ž. Tomić, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenković, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora furcata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenković, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenković, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenković & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenković, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu PQ, Tomić Z, Tomšovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.
Collapse
Affiliation(s)
- T. Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| | - I. Milenković
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Belgrade, Faculty of Forestry, 11030 Belgrade, Serbia
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - J. Janoušek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - T. Kudláček
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Greifswald, Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Z.Á. Nagy
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - B. Baharuddin
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - J. Bakonyi
- HUN-REN Centre for Agricultural Research, Plant Protection Institute, ELKH, 1022 Budapest, Hungary
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA
| | - S.O. Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - T.-T. Chang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - N.M. Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - T. Corcobado
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Cravador
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Algarve, 8005-130 Faro, Portugal
| | - B. Đorđević
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Durán
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - M. Ferreira
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - C.-H. Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - L. Garcia
- Universidad Nacional Agraria, Carretera Norte, Managua 11065, Nicaragua
| | - A. Hieno
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - H.-H. Ho
- Department of Biology, State University of New York, New Paltz, New York 12561, USA
| | - C. Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA
| | - M. Junaid
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - K. Kageyama
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - T. Kuswinanti
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - C. Maia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - T. Májek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - H. Masuya
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - G. Magnano di San Lio
- University Mediterranea of Reggio Calabria, Department of Agriculture, 89124 Reggio Calabria, Italy
| | | | - N. Nasri
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, 790-8566, Japan
| | - L.S.S. Oliveira
- Research and Development, Bracell, Alagoinhas, Bahia 48030-300, Brazil
| | - A. Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - A. Pérez-Sierra
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - A. Rosmana
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - E. Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, 4030000 Concepción, Chile
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy
| | - R. Singh
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Z. Stanivuković
- University of Banja Luka, Faculty of Forestry, 78000 Banja Luka, Bosnia and Herzegovina
| | - M. Tarigan
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - P.Q. Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - Z. Tomić
- Center for Plant Protection, Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia
| | - M. Tomšovský
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - S. Uematsu
- Laboratory of Molecular and Cellular Biology, Dept. of Bioregulation and Bio-interaction, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - J.F. Webber
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - H.-C. Zeng
- The Institute of Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - F.-C. Zheng
- College of Environment and Plant Protection, Hainan University, Baodoa Xincun, Danzhou City, Hainan 571737, China
| | - C.M. Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - M. Horta Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| |
Collapse
|
3
|
Abad Z, Burgess T, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl J, Verkleij G, Broders K, Schena L, Redford A. Phytophthora : taxonomic and phylogenetic revision of the genus. Stud Mycol 2023; 106:259-348. [PMID: 38298569 PMCID: PMC10825748 DOI: 10.3114/sim.2023.106.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Many members of the Oomycota genus Phytophthora cause economic and environmental impact diseases in nurseries, horticulture, forest, and natural ecosystems and many are of regulatory concern around the world. At present, there are 223 described species, including eight unculturable and three lost species. Twenty-eight species need to be redescribed or validated. A lectotype, epitype or neotype was selected for 20 species, and a redescription based on the morphological/molecular characters and phylogenetic placement is provided. In addition, the names of five species are validated: P. cajani, P. honggalleglyana (Synonym: P. hydropathica), P. megakarya, P. pisi and P. pseudopolonica for which morphology and phylogeny are given. Two species, P. ×multiformis and P. uniformis are presented as new combinations. Phytophthora palmivora is treated with a representative strain as both lecto- and epitypification are pending. This manuscript provides the updated multigene phylogeny and molecular toolbox with seven genes (ITS rDNA, β-tub, COI, EF1α, HSP90, L10, and YPT1) generated from the type specimens of 212 validly published, and culturable species (including nine hybrid taxa). The genome information of 23 types published to date is also included. Several aspects of the taxonomic revision and phylogenetic re-evaluation of the genus including species concepts, concept and position of the phylogenetic clades recognized within Phytophthora are discussed. Some of the contents of this manuscript, including factsheets for the 212 species, are associated with the "IDphy: molecular and morphological identification of Phytophthora based on the types" online resource (https://idtools.org/tools/1056/index.cfm). The first version of the IDphy online resource released to the public in September 2019 contained 161 species. In conjunction with this publication, we are updating the IDphy online resource to version 2 to include the 51 species recently described. The current status of the 223 described species is provided along with information on type specimens with details of the host (substrate), location, year of collection and publications. Additional information is provided regarding the ex-type culture(s) for the 212 valid culturable species and the diagnostic molecular toolbox with seven genes that includes the two metabarcoding genes (ITS and COI) that are important for Sanger sequencing and also very valuable Molecular Operational Taxonomic Units (MOTU) for second and third generation metabarcoding High-throughput sequencing (HTS) technologies. The IDphy online resource will continue to be updated annually to include new descriptions. This manuscript in conjunction with IDphy represents a monographic study and the most updated revision of the taxonomy and phylogeny of Phytophthora, widely considered one of the most important genera of plant pathogens. Taxonomic novelties: New species: Phytophthora cajani K.S. Amin, Baldev & F.J. Williams ex Abad, Phytophthora honggalleglyana Abad, Phytophthora megakarya Brasier & M.J. Griffin ex Abad, Phytophthora pisi Heyman ex Abad, Phytophthora pseudopolonica W.W. Li, W.X. Huai & W.X. Zhao ex Abad & Kasiborski; New combinations: Phytophthora ×multiformis (Brasier & S.A. Kirk) Abad, Phytophthora uniformis (Brasier & S.A. Kirk) Abad; Epitypifications (basionyms): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora inundata Brasier et al., Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Lectotypifications (basionym): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Neotypifications (basionym): Phloeophthora syringae Kleb., Phytophthora meadii McRae Citation: Abad ZG, Burgess TI, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl JC, Verkleij G, Broders K, Schena L, Redford AJ (2023). Phytophthora: taxonomic and phylogenetic revision of the genus. Studies in Mycology 106: 259-348. doi: 10.3114/sim.2023.106.05.
Collapse
Affiliation(s)
- Z.G. Abad
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia;
| | - T. Bourret
- Department of Plant Pathology, University of California, Davis, CA, USA,
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - S.O. Cacciola
- Department of Agricultural, Food and Environment, University of Catania, Italy;
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Italy;
| | - R. Mathew
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - B. Kasiborski
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - S. Srivastava
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - K. Kageyama
- River Basin Research Center, Gifu University, Japan,
| | - J.C. Bienapfl
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - G. Verkleij
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - K. Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA;
| | - L. Schena
- Dipartimento di Agraria, Mediterranean University of Reggio Calabria, Italy,
| | - A.J. Redford
- USDA APHIS PPQ S&T Identification Technology Program, USA
| |
Collapse
|
4
|
da Silva AS, Rennó MHL, Quitania ACR, Café-Filho AC, Miller RNG, de Araújo AE, Pinho DB. Ramularia leaf spot: PCR-based methods reveal widespread distribution of Ramulariopsis pseudoglycines and limited presence of R. gossypii in Brazil. Sci Rep 2023; 13:9826. [PMID: 37330533 PMCID: PMC10276850 DOI: 10.1038/s41598-023-33530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2023] [Indexed: 06/19/2023] Open
Abstract
Whilst Brazil is the fourth largest cotton producer globally, incidence of ramularia leaf spot (RLS) has decreased yield. In 2017-18 and 2018-19, ca. 300 fungal samples were collected throughout Brazil. Hyphal tip cultures were obtained for amplification of the RNA polymerase II (RPB2), 28S rRNA, the ribosomal DNA internal transcribed spacers (ITS), actin (ACT), elongation factor (EF1-α) and histone H3 (HIS3) genomic regions. Additionally, sequences of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were obtained by nanopore sequencing and the EF1-α region was selected as a marker for rapid recognition of Ramulariopsis species. Clade assignments based on the concatenated-sequence tree were identical to those in tree generated by RPB2-sequences, as well as in an RPB2 haplotype network and an ISSR (TGTC)4 dendrogram, in identification with species-specific primers and based on morphological comparisons. Out of 267 examined isolates, 252 were identified as Ramulariopsis pseudoglycines, indicating this species as the most widespread causal agent of cotton RLS in the Brazilian growing regions. Species-specific primers developed in the study that target the EF1-α gene provide an opportunity for extensive RLS sampling worldwide to study the distribution of Ramulariopsis species. Such data will aid breeders and plant pathologists in cotton disease resistance development and fungicide resistance avoidance.
Collapse
|
5
|
de Novais DPS, Batista TM, Costa EA, Pirovani CP. Genomic and Pathogenicity Mechanisms of the Main Theobroma cacao L. Eukaryotic Pathogens: A Systematic Review. Microorganisms 2023; 11:1567. [PMID: 37375069 DOI: 10.3390/microorganisms11061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A set of diseases caused by fungi and oomycetes are responsible for large losses in annual world cocoa production. Managing the impact caused by these diseases is very complex because a common solution has yet to be found for different pathogens. In this context, the systematic knowledge of Theobroma cacao L. pathogens' molecular characteristics may help researchers understand the possibilities and limitations of cocoa disease management strategies. This work systematically organized and summarized the main findings of omics studies of T. cacao eukaryotic pathogens, focusing on the plant-pathogen interaction and production dynamics. Using the PRISMA protocol and a semiautomated process, we selected papers from the Scopus and Web of Science databases and collected data from the selected papers. From the initial 3169 studies, 149 were selected. The first author's affiliations were mostly from two countries, Brazil (55%) and the USA (22%). The most frequent genera were Moniliophthora (105 studies), Phytophthora (59 studies) and Ceratocystis (13 studies). The systematic review database includes papers reporting the whole-genome sequence from six cocoa pathogens and evidence of some necrosis-inducing-like proteins, which are common in T. cacao pathogen genomes. This review contributes to the knowledge about T. cacao diseases, providing an integrated discussion of T. cacao pathogens' molecular characteristics, common mechanisms of pathogenicity and how this knowledge is produced worldwide.
Collapse
Affiliation(s)
- Diogo Pereira Silva de Novais
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
- Bahia Federal Institute of Education, Science and Technology (IFBA), Porto Seguro 45810-000, BA, Brazil
| | - Thiago Mafra Batista
- Environmental Science Training Center, Federal University of Southern Bahia (UFSB), Porto Seguro 45810-000, BA, Brazil
| | - Eduardo Almeida Costa
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
6
|
Rêgo APB, Mora-Ocampo IY, Corrêa RX. Interactions of Different Species of Phytophthora with Cacao Induce Genetic, Biochemical, and Morphological Plant Alterations. Microorganisms 2023; 11:1172. [PMID: 37317146 DOI: 10.3390/microorganisms11051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Diseases associated with Phytophthora cause considerable losses in cocoa production worldwide. Analyzing genes, proteins, and metabolites involved in Theobroma cacao's interaction with Phytophthora species is essential to explaining the molecular aspects of plant defense. Through a systematic literature review, this study aims to identify reports of genes, proteins, metabolites, morphological characteristics, and molecular and physiological processes of T. cacao involved in its interaction with species of Phytophthora. After the searches, 35 papers were selected for the data extraction stage, according to pre-established inclusion and exclusion criteria. In these studies, 657 genes and 32 metabolites, among other elements (molecules and molecular processes), were found to be involved in the interaction. The integration of this information resulted in the following conclusions: the expression patterns of pattern recognition receptors (PRRs) and a possible gene-to-gene interaction participate in cocoa resistance to Phytophthora spp.; the expression pattern of genes that encode pathogenesis-related (PRs) proteins is different between resistant and susceptible genotypes; phenolic compounds play an important role in preformed defenses; and proline accumulation may be involved in cell wall integrity. Only one proteomics study of T. cacao-Phytophthora spp. was found, and some genes proposed via QTL analysis were confirmed in transcriptomic studies.
Collapse
Affiliation(s)
- Angra Paula Bomfim Rêgo
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Irma Yuliana Mora-Ocampo
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Ronan Xavier Corrêa
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado km 16, Ilhéus 45662-900, Bahia, Brazil
- Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
7
|
Gallego AM, Zambrano RA, Zuluaga M, Camargo Rodríguez AV, Candamil Cortés MS, Romero Vergel AP, Arboleda Valencia JW. Analysis of fruit ripening in Theobroma cacao pod husk based on untargeted metabolomics. PHYTOCHEMISTRY 2022; 203:113412. [PMID: 36055428 DOI: 10.1016/j.phytochem.2022.113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The pod husk of Theobroma cacao (CPH) plays an important agronomical role, as its appearance is used as indicator of ripening, guiding the farmers in the harvest process. Cacao harvesting is not a standardized practice because farmers harvest between six up to eight months from flowering, guided by pod's color and shape. The mixture of cacao beans from different ripening stages (RS), negatively affecting the quality and price of grain. A way to help the farmers in the harvest standardization could be through the use of chemical markers and visual indicators of CPH ripening. This study analyses CPH's metabolic distribution of two cacao clones, ICS95 and CCN51 at six, seven, and eight months of ripening. Untargeted metabolomics was done using HPLC-MS/MS for biomarker discovery and association to cacao ripening. The results indicated a strong metabolic differentiation of the sixth month with the rest of the months independent of the variety. Also, metabolic differences were found between cacao clones for the seventh and eighth month. We annotated five potential biochemical markers including 3-caffeoylpelargodinin 5-glucoside, indoleacetaldehyde, procyanidin A dimer, procyanidin C1, and kaempferol. We further looked for correlation between patterns of progression of our markers against quantitative indicators of CPH appearance and texture, at the same ripening stages. We also performed a functional analysis and three possible metabolic pathways: flavone and flavonol biosynthesis, flavonoid biosynthesis, and tryptophan metabolism were identified associated with stress sensing, plant development and defense respectively. We found significant and positive correlations between green color density and all metabolites. For texture, the correlations were significantly negative with all metabolites. Our results suggest that about the sixth month is appropriate for harvesting cacao in the region of Caldas, Colombia in order to avoid all the metabolic variations occurring at later stages of ripening which impact the cacao bean quality. Therefore, studying the cacao ripening process can help in the estimation of the best harvest time and contribute to the standardization of harvest practices.
Collapse
Affiliation(s)
- Adriana M Gallego
- Grupo de Biotecnología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia; Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia.
| | - Romer A Zambrano
- Facultad de Ingeniería y Arquitectura, Universidad Nacional, Sede Manizales, Colombia.
| | - Martha Zuluaga
- Grupo de Investigación GIEPRONAL, Universidad Nacional Abierta y a Distancia, Dosquebradas, Risaralda, Colombia.
| | | | - Mariana S Candamil Cortés
- Centro de Investigaciones en Medio Ambiente y Desarrollo-CIMAD, Universidad de Manizales, Cra. 9a # 19-03, Manizales, 170001, Colombia.
| | - Angela P Romero Vergel
- FITOBIOL Research Group, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 # 53-108, Medellín, 050010, Colombia.
| | - Jorge W Arboleda Valencia
- Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia; Centro de Investigaciones en Medio Ambiente y Desarrollo-CIMAD, Universidad de Manizales, Cra. 9a # 19-03, Manizales, 170001, Colombia; FITOBIOL Research Group, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 # 53-108, Medellín, 050010, Colombia.
| |
Collapse
|
8
|
Jaimes-Suárez YY, Carvajal-Rivera AS, Galvis-Neira DA, Carvalho FEL, Rojas-Molina J. Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. FRONTIERS IN PLANT SCIENCE 2022; 13:921469. [PMID: 35968107 PMCID: PMC9366013 DOI: 10.3389/fpls.2022.921469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Low technological knowledge in production chains, global climate change, and misinformation are concrete threats to food security. In addition, these combined threats also trigger ecological instability in megadiverse areas of the world, especially in some cacao-producing countries in South America, where this crop plays an important socio-economic role, even being used to replace illicit crops. Accordingly, the use of agroforestry systems approaches has emerged as a good alternative to maintain productivity, add high-value commodities to producers, and provide important ecosystem services for sustainable agriculture. However, limitations associated with the competition for resources between the species composing the system, and the higher incidence of some diseases, have led many producers to abandon this strategy, opting for monoculture. In this review, we seek to gather the main information available in the literature, aiming to answer the question: what is the real scientific evidence that supports the benefits and harms of adopting agroforestry systems in cacao production? We seek to make critical scrutiny of the possible negative effects of certain associations of the agroforestry system with biotic and abiotic stress in cacao. Here, we review the possible competition for light and nutrients and discuss the main characteristics to be sought in cacao genotypes to optimize these inter-specific relationships. In addition, we review the research advances that show the behavior of the main cacao diseases (Witch's broom disease, frosty pod rot, black pod rot) in models of agroforestry systems contrasted with monoculture, as well as the optimization of agronomic practices to reduce some of these stresses. This compendium, therefore, sheds light on a major gap in establishing truly sustainable agriculture, which has been treated much more from the perspective of negative stigma than from the real technological advantages that can be combined to the benefit of a balanced ecosystem with generating income for farmers.
Collapse
|
9
|
Burgess T, Edwards J, Drenth A, Massenbauer T, Cunnington J, Mostowfizadeh-Ghalamfarsa R, Dinh Q, Liew E, White D, Scott P, Barber P, O’Gara E, Ciampini J, McDougall K, Tan Y. Current status of Phytophthora in Australia. PERSOONIA 2021; 47:151-177. [PMID: 37693794 PMCID: PMC10486634 DOI: 10.3767/persoonia.2021.47.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022]
Abstract
Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia. Citation: Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.
Collapse
Affiliation(s)
- T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - J. Edwards
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia; La Trobe University, Bundoora, VIC 3083, Australia
| | - A. Drenth
- Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, Dutton Park QLD, 4102, Brisbane, Australia
| | - T. Massenbauer
- TiloMass Environmental Services, PO Box 1148, Esperance WA, 6450, Australia
| | - J. Cunnington
- Department of Agriculture, Water and the Environment, 7 London Circuit, Canberra ACT 2600 Australia
| | | | - Q. Dinh
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia; La Trobe University, Bundoora, VIC 3083, Australia
| | - E.C.Y. Liew
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney NSW 2000, Australia
| | - D. White
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - P. Scott
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Plant Pathologist, DPIRD Diagnostics and Laboratory Services, Sustainability and Biosecurity, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kennsington WA 6151, Australia
| | - P.A. Barber
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Arbor Carbon P/L, ROTA Compound off Discovery Way, Murdoch University, Murdoch 6150, Australia
| | - E. O’Gara
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington WA 6151, Australia
| | - J. Ciampini
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington WA 6151, Australia
| | - K.L. McDougall
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Bundoora VIC 3083, Australia
| | - Y.P. Tan
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park QLD 4102; Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
10
|
Burgess T, Edwards J, Drenth A, Massenbauer T, Cunnington J, Mostowfizadeh-Ghalamfarsa R, Dinh Q, Liew E, White D, Scott P, Barber P, O’Gara E, Ciampini J, McDougall K, Tan Y. Current status of Phytophthora in Australia. PERSOONIA 2021; 47:151-177. [PMID: 38352973 PMCID: PMC10784666 DOI: 10.3767/persoonia.2023.47.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 02/16/2024]
Abstract
Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia. Citation: Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.
Collapse
Affiliation(s)
- T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - J. Edwards
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia; La Trobe University, Bundoora, VIC 3083, Australia
| | - A. Drenth
- Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, Dutton Park QLD, 4102, Brisbane, Australia
| | - T. Massenbauer
- TiloMass Environmental Services, PO Box 1148, Esperance WA, 6450, Australia
| | - J. Cunnington
- Department of Agriculture, Water and the Environment, 7 London Circuit, Canberra ACT 2600 Australia
| | | | - Q. Dinh
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia; La Trobe University, Bundoora, VIC 3083, Australia
| | - E.C.Y. Liew
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney NSW 2000, Australia
| | - D. White
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - P. Scott
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Plant Pathologist, DPIRD Diagnostics and Laboratory Services, Sustainability and Biosecurity, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kennsington WA 6151, Australia
| | - P.A. Barber
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Arbor Carbon P/L, ROTA Compound off Discovery Way, Murdoch University, Murdoch 6150, Australia
| | - E. O’Gara
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington WA 6151, Australia
| | - J. Ciampini
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington WA 6151, Australia
| | - K.L. McDougall
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Bundoora VIC 3083, Australia
| | - Y.P. Tan
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park QLD 4102; Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
11
|
Rojas-Rojas FU, Vega-Arreguín JC. Epigenetic insight into regulatory role of chromatin covalent modifications in lifecycle and virulence of Phytophthora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:445-457. [PMID: 33876568 DOI: 10.1111/1758-2229.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The Oomycota phylum includes fungi-like filamentous microorganisms classified as plant pathogens. The most destructive genus within oomycetes is Phytophthora, which causes diseases in plants of economic importance in agriculture, forestry and ornamental. Phytophthora species are widespread worldwide and some of them enable adaptation to different hosts and environmental changes. The development of sexual and asexual reproductive structures and the secretion of proteins to control plant immunity are critical for the adaptative lifestyle. However, molecular mechanisms underlying the adaptation of Phytophthora to different hosts and environmental changes are poorly understood. In the last decade, the role of epigenetics has gained attention, and important evidence has demonstrated the potential role of chromatin covalent modifications, such as DNA methylation and histone acetylation/methylation, in the regulation of gene expression during Phytophthora development and plant infection. Here, we review for the first time the evidence of the potential role of chromatin covalent modifications in the lifecycle of the phytopathogenic genus Phytophthora, including virulence, and host and environment adaptation processes.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES - León, UNAM), Blvd. UNAM 2011, León, Guanajuato, 37684, Mexico
| |
Collapse
|