1
|
Shamsuzzaman M, Kim S, Kim J. Bacteriophage as a novel therapeutic approach for killing multidrug-resistant Escherichia coli ST131 clone. Front Microbiol 2024; 15:1455710. [PMID: 39726968 PMCID: PMC11670814 DOI: 10.3389/fmicb.2024.1455710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
The emergence of the multidrug-resistant (MDR) Escherichia coli ST131 clone has significantly impacted public health. With traditional antibiotics becoming less effective against MDR bacteria, there is an urgent need for alternative treatment options. This study aimed to isolate and characterize four lytic phages (EC.W2-1, EC.W2-6, EC.W13-3, and EC.W14-3) from hospital sewage water and determine their effectiveness against the ST131 clone. These phages demonstrated a broad host range, effectively lysing 94.4% of highly pathogenic E. coli ST131 isolates. Morphological observations and phylogenetic analysis indicate that EC.W2-1, and EC.W13-3 belong to the Tequatrovirus genus in the Straboviridae family, while EC.W2-6 and EC.W14-3 are part of the Kuravirus genus in the Podoviridae family. Phages remained stable at pH 2-10 for 4 h and below 80°C for 1 h. These four phages showed in vitro bacterial lytic activity at various MOIs (0.1-0.001). The one-step growth curve of phages exhibited a short latent period of approximately 10-20 min and a moderate burst size of 50-80 (pfu/cell). Phages' genome size ranged from 46,325-113,909 bp, with G + C content of 35.1 -38.3%. No virulence or drug resistance genes were found, which enhanced their safety profile. In vivo, EC.W2-6 and EC.W13.3, along with their cocktail, fully protected against the ESBL-producing E. coli ST131 infection model in vivo. Combining these phages and a 3-day repeated single phage, EC.W13-3 significantly enhanced the survival rate of E. coli ST131 infected mice at low MOI (0.01-0.001). The in vivo effectiveness of the isolated phages and the EC.W2-6 and EC.W14-3 cocktail in highly reducing bacterial load CFU/g in multiple organs strongly supports their potential efficacy. Based on in vivo, in vitro, and genomic analyses, phages have been proposed as novel and suitable candidates for killing the pandemic ST131 clone.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Sabença C, Romero-Rivera M, Barbero-Herranz R, Sargo R, Sousa L, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Torres C, Igrejas G, del Campo R, Poeta P. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet Sci 2024; 11:469. [PMID: 39453061 PMCID: PMC11512376 DOI: 10.3390/vetsci11100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (blaCTX-M-65, blaCTX-M-55, and blaEC-1982). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Mario Romero-Rivera
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Raquel Barbero-Herranz
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Roberto Sargo
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipe Silva
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- LxCRAS—Centro de Recuperação de Animais Silvestres de Lisboa, 1500-068 Lisboa, Portugal;
| | - Ana Carolina Abrantes
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Chen D, Yin Y, Hu Y, Cao L, Zhao C, Li B. Transposon-aided capture (TRACA) of plasmids from the human gut. Lett Appl Microbiol 2023; 76:ovad132. [PMID: 38031336 DOI: 10.1093/lambio/ovad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
The gut microbiota consists of a vast and diverse assemblage of microorganisms that play a pivotal role in maintaining host health. Nevertheless, a significant portion of the human gut microbiota remains uncultivated. Plasmids, a type of MGE, assume a critical function in the biological evolution and adaptation of bacteria to varying environments. To investigate the plasmids present within the gut microbiota community, we used the transposon-aided capture method (TRACA) to explore plasmids derived from the gut microbiota. In this study, fecal samples were collected from two healthy human volunteers and subsequently subjected to the TRACA method for plasmid isolation. Then, the complete sequence of the plasmids was obtained using the genome walking method, and sequence identity was also analyzed. A total of 15 plasmids were isolated. At last, 13 plasmids were successfully sequenced, of which 12 plasmids were highly identical to the plasmids in the National Center for Biotechnology Information (NCBI) database and were all small plasmids. Furthermore, a putative novel plasmid, named pMRPHD, was isolated, which had mobilized elements (oriT and oriV) and a potential type II restriction-modification (R-M) system encoded by DNA cytosine methyltransferase and type II restriction enzyme (Ban I), whose specific functions and applications warrant further exploration.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Yunfei Hu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Linyan Cao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Changhui Zhao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| |
Collapse
|
4
|
Feng J, Zhuang Y, Luo J, Xiao Q, Wu Y, Chen Y, Chen M, Zhang X. Prevalence of colistin-resistant mcr-1-positive Escherichia coli isolated from children patients with diarrhoea in Shanghai, 2016-2021. J Glob Antimicrob Resist 2023; 34:166-175. [PMID: 37355039 DOI: 10.1016/j.jgar.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVES The emergence of the plasmid-mediated colistin resistance 1 (mcr-1) of Escherichia coli has become a global health concern. This study reports the prevalence of mcr-1 among E. coli isolates from patients with diarrheal disease in Shanghai and the genetic characterization of mcr-1-harbouring plasmids. METHODS A total of 1723 E. coli strains were collected from the faeces of patients with diarrheal disease in all sentinel hospitals in Shanghai from 2016 to 2021. Antimicrobial susceptibility testing was performed by broth microdilution and plasmid conjunction transfer assay was carried out using E. coli C600 as the recipient. The mcr-1-positive E. coli strains (MCRPEC) were subjected to molecular characterization and bioinformatic analysis of the mcr-1-bearing plasmids that they harboured. RESULTS Only 5 (0.28%) strains were found to harbour the mcr-1 gene using PCR screening. Plasmid conjugation assay and whole-genome sequencing indicated that EC16500, one MCRPEC strain that co-exhibited mcr-1, blaTEM-1, blaOXA-1, qnrS1, qnrS2, arr-3, and catB3, could be conjugated to EC C600 by horizontal transfer with an average efficiency of 3.2 × 10-5. The plasmid pEC16500 harboured similar backbones as p70_2_15, pECGD-8-33, pNCYU-29-19-1_MCR1, and pIBMC_mcr1, and was shown to be encoded within a type IV secretion system (T4SS)-containing 32.6 kbp IncX4, next to the pap2-like membrane-associated gene, to form a 2.4-kb cassette. Furthermore, sequencing and phylogenetic analyses revealed a similarity between other MCR-1-homolog proteins, indicating that the five E. coli isolates were colistin-resistant. CONCLUSION Our data represents a significant snapshot of colistin resistance mcr-1 genes and highlights the need to increase active surveillance, especially among children under five years of age, in Shanghai. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jiayuan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Quan Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yitong Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Ekhlas D, Sanjuán JMO, Manzanilla EG, Leonard FC, Argüello H, Burgess CM. Comparison of antimicrobial resistant Escherichia coli isolated from Irish commercial pig farms with and without zinc oxide and antimicrobial usage. Gut Pathog 2023; 15:8. [PMID: 36829209 PMCID: PMC9951511 DOI: 10.1186/s13099-023-00534-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The prophylactic use of antimicrobials and zinc oxide (ZnO) in pig production was prohibited by the European Union in 2022 due to potential associations between antimicrobial and heavy metal usage with antimicrobial resistance (AMR) and concerns regarding environmental pollution. However, the effects of their usage on the bacterial AMR profiles on commercial pig farms are still not fully understood and previous studies examining the effect of ZnO have reported contrasting findings. The objective of this study was to examine the effects of antimicrobial and ZnO usage on AMR on commercial pig farms. Faecal and environmental samples were taken on 10 Irish commercial farms, of which 5 farms regularly used ZnO and antimicrobials (amoxicillin or sulphadiazine-trimethoprim) for the prevention of disease. The other 5 farms did not use ZnO or any other form of prophylaxis. Escherichia coli numbers were quantified from all samples using non-supplemented and supplemented Tryptone Bile X-glucuronide agar. RESULTS In total 351 isolates were phenotypically analysed, and the genomes of 44 AmpC/ESBL-producing E. coli isolates from 4 farms were characterised using whole-genome sequencing. Phenotypic analysis suggested higher numbers of multi-drug resistant (MDR) E. coli isolates on farms using prophylaxis. Furthermore, farms using prophylaxis were associated with higher numbers of isolates resistant to apramycin, trimethoprim, tetracycline, streptomycin, and chloramphenicol, while resistance to ciprofloxacin was more associated with farms not using any prophylaxis. Thirty-four of the 44 AmpC/ESBL-producing E. coli strains harboured the blaCTX-M-1 resistance gene and were multi drug resistant (MDR). Moreover, network analysis of plasmids and analysis of integrons showed that antimicrobial and biocide resistance genes were frequently co-located on mobile genetic elements, indicating the possibility for co-selection during antimicrobial or biocide usage as a contributor to AMR occurrence and persistence on farms. CONCLUSIONS The results of this study showed evidence that antimicrobial and ZnO treatment of pigs post-weaning can favour the selection and development of AMR and MDR E. coli. Co-location of resistance genes on mobile genetic elements was observed. This study demonstrated the usefulness of phenotypic and genotypic detection of antimicrobial resistance by combining sequencing and microbiological methods.
Collapse
Affiliation(s)
- Daniel Ekhlas
- grid.6435.40000 0001 1512 9569Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland ,grid.6435.40000 0001 1512 9569Pig Development Department, Teagasc Moorepark, Fermoy, Co. Cork Ireland
| | - Juan M. Ortiz Sanjuán
- grid.6435.40000 0001 1512 9569Pig Development Department, Teagasc Moorepark, Fermoy, Co. Cork Ireland ,grid.411901.c0000 0001 2183 9102Grupo de Genómica Y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Edgar G. Manzanilla
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland ,grid.6435.40000 0001 1512 9569Pig Development Department, Teagasc Moorepark, Fermoy, Co. Cork Ireland
| | - Finola C. Leonard
- grid.7886.10000 0001 0768 2743School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Héctor Argüello
- grid.4807.b0000 0001 2187 3167Animal Health Department, Veterinary Faculty, Universidad de León, León, Spain
| | - Catherine M. Burgess
- grid.6435.40000 0001 1512 9569Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
6
|
Genomic Characteristics and Phylogenetic Analyses of a Multiple Drug-Resistant Klebsiella pneumoniae Harboring Plasmid-Mediated MCR-1 Isolated from Tai'an City, China. Pathogens 2023; 12:pathogens12020221. [PMID: 36839493 PMCID: PMC9963795 DOI: 10.3390/pathogens12020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a clinically common opportunistic pathogen that causes pneumonia and upper respiratory tract infection in humans as well as community-and hospital-acquired infections, posing significant threats to public health. Moreover, the insertion of a plasmid carrying the mobile colistin resistance (MCR) genes brings obstacles to the clinical treatment of K. pneumoniae infection. In this study, a strain of colistin-resistant K. pneumoniae (CRKP) was isolated from sputum samples of a patient who was admitted to a tertiary hospital in Tai'an city, China, and tested for drug sensitivity. The results showed that KPTA-2108 was multidrug-resistant (MDR), being resistant to 21 of 26 selected antibiotics, such as cefazolin, amikacin, tigecycline and colistin but sensitive to carbapenems via antibiotic resistance assays. The chromosome and plasmid sequences of the isolated strain KPTA-2108 were obtained using whole-genome sequencing technology and then were analyzed deeply using bioinformatics methods. The whole-genome sequencing analysis showed that the length of KPTA-2108 was 5,306,347 bp and carried four plasmids, pMJ4-1, pMJ4-2, pMJ4-3, and pMJ4-4-MCR. The plasmid pMJ4-4-MCR contained 30,124 bp and was found to be an IncX4 type. It was the smallest plasmid in the KPTA-2108 strain and carried only one resistance gene MCR-1. Successful conjugation tests demonstrated that pMJ4-4-MCR carrying MCR-1 could be horizontally transmitted through conjugation between bacteria. In conclusion, the acquisition and genome-wide characterization of a clinical MDR strain of CRKP may provide a scientific basis for the treatment of K. pneumoniae infection and epidemiological data for the surveillance of CRKP.
Collapse
|
7
|
Algarni S, Han J, Gudeta DD, Khajanchi BK, Ricke SC, Kwon YM, Rhoads DD, Foley SL. In silico analyses of diversity and dissemination of antimicrobial resistance genes and mobile genetics elements, for plasmids of enteric pathogens. Front Microbiol 2023; 13:1095128. [PMID: 36777021 PMCID: PMC9908598 DOI: 10.3389/fmicb.2022.1095128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction The antimicrobial resistance (AMR) mobilome plays a key role in the dissemination of resistance genes encoded by mobile genetics elements (MGEs) including plasmids, transposons (Tns), and insertion sequences (ISs). These MGEs contribute to the dissemination of multidrug resistance (MDR) in enteric bacterial pathogens which have been considered as a global public health risk. Methods To further understand the diversity and distribution of AMR genes and MGEs across different plasmid types, we utilized multiple sequence-based computational approaches to evaluate AMR-associated plasmid genetics. A collection of 1,309 complete plasmid sequences from Gammaproteobacterial species, including 100 plasmids from each of the following 14 incompatibility (Inc) types: A/C, BO, FIA, FIB, FIC, FIIA, HI1, HI2, I1, K, M, N, P except W, where only 9 sequences were available, was extracted from the National Center for Biotechnology Information (NCBI) GenBank database using BLAST tools. The extracted FASTA files were analyzed using the AMRFinderPlus web-based tools to detect antimicrobial, disinfectant, biocide, and heavy metal resistance genes and ISFinder to identify IS/Tn MGEs within the plasmid sequences. Results and Discussion In silico prediction based on plasmid replicon types showed that the resistance genes were diverse among plasmids, yet multiple genes were widely distributed across the plasmids from enteric bacterial species. These findings provide insights into the diversity of resistance genes and that MGEs mediate potential transmission of these genes across multiple plasmid replicon types. This notion was supported by the observation that many IS/Tn MGEs and resistance genes known to be associated with them were common across multiple different plasmid types. Our results provide critical insights about how the diverse population of resistance genes that are carried by the different plasmid types can allow for the dissemination of AMR across enteric bacteria. The results also highlight the value of computational-based approaches and in silico analyses for the assessment of AMR and MGEs, which are important elements of molecular epidemiology and public health outcomes.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Bijay K. Khajanchi
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Steven C. Ricke
- Meat Science & Animal Biologics Discovery Program and Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Douglas D. Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland. Pathogens 2022; 11:pathogens11121508. [PMID: 36558842 PMCID: PMC9785875 DOI: 10.3390/pathogens11121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cefiderocol (CFDC) is a novel, broad-spectrum siderophore cephalosporin with potential activity against multi-drug (MDR) and extensively drug-resistant (XDR) Enterobacterales, including carbapenem-resistant strains. We assessed the in vitro susceptibility to CFDC of MDR, and XDR E. coli isolates derived from clinical samples of hospitalized patients. Disk diffusion (DD) and MIC (minimum inhibitory concentration) test strip (MTS) methods were used. The results were interpreted based on EUCAST (version 12.0 2022) recommendations. Among all E. coli isolates, 98 (94.2%) and 99 (95.2%) were susceptible to CFDC when the DD and MTS methods were used, respectively (MIC range: <0.016−4 µg/mL, MIC50: 0.19 µg/mL, MIC90: 0.75 µg/mL). With the DD and MTS methods, all (MIC range: 0.016−2 µg/mL, MIC50: 0.19 µg/mL, MIC90: 0.75 µg/mL) but three (96.6%) ESBL-positive isolates were susceptible to CFDC. Out of all the metallo-beta-lactamase-positive E. coli isolates (MIC range: 0.016−4 µg/mL, MIC50: 0.5 µg/mL, MIC90: 1.5 µg/mL), 16.7% were resistant to CFDC with the DD method, while 11.1% were resistant to CFDC when the MTS method was used. CFDC is a novel therapeutic option against MDR and XDR E. coli isolates and is promising in the treatment of carbapenem-resistant E. coli strains, also for those carrying Verona integron-encoded metallo-beta-lactamases, when new beta-lactam-beta-lactamase inhibitors cannot be used.
Collapse
|
9
|
Obaidat MM, Tarazi YH, AlSmadi WM. Sheep and goats are reservoirs of colistin resistant
Escherichia coli
that co‐resist critically important antimicrobials: First study from Jordan. J Food Saf 2022. [DOI: 10.1111/jfs.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad M. Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine Jordan University of Science and Technology Ar‐Ramtha, Irbid Jordan
| | - Yaser H. Tarazi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine Jordan University of Science and Technology Ar‐Ramtha, Irbid Jordan
| | - Walaa M. AlSmadi
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine Jordan University of Science and Technology Ar‐Ramtha, Irbid Jordan
| |
Collapse
|
10
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Ma X, Lv X, Feng S, Liu R, Fu H, Gao F, Xu H. Genetic Characterization of an ST5571 Hypervirulent Klebsiella pneumoniae Strain Co-Producing NDM-1, MCR-1, and OXA-10 Causing Bacteremia. Infect Drug Resist 2022; 15:2293-2299. [PMID: 35517899 PMCID: PMC9064484 DOI: 10.2147/idr.s360715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the phenotypic and genomic characteristics of the multi-drug resistant and hypervirulent Klebsiella pneumoniae strain recovered from bacteremia. Methods Antimicrobial susceptibility testing (AST) was performed by the microdilution method. Antimicrobial resistance genes, virulence-associated genes, multilocus sequence typing (MLST), and plasmid replicon were characterized by next-generation sequencing (NGS) and nanopore sequencing. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE) and Southern blotting were performed to characterize the plasmid profile. Results The hypervirulent colistin- and carbapenem-resistant K. pneumoniae strain DY2009 was identified as ST5571, co-carrying mcr-1, bla NDM-1, and bla OXA-10. In silico analysis found that it was K2 serotype. AST results revealed that DY2009 was resistant to carbapenems, cephalosporins, ciprofloxacin, chloramphenicol, and colistin but remained susceptible to aztreonam, gentamicin, amikacin, and tigecycline. Through the whole-genome analysis, a variety of virulence determinants were identified, including rmpA. Plasmid analysis confirmed that the mcr-1 and bla NDM-1 gene harbored a ~33 kb IncX4 plasmid and a ~44 kb IncX3 plasmid. In contrast, bla OXA-10 was encoded by chromosome. Conclusion To the best of our knowledge, we first report the clinical hypervirulent K. pneumoniae isolate co-producing MCR-1, NDM-1, and OXA-10 causing bacteremia. We found that mcr-1 and bla NDM-1 genes were located on two self-conjugative epidemic plasmids, contributing to the widespread MCR-1 and NDM-1 in China. The results of this work improve our understanding of the genetic background of colistin- and carbapenem-resistant K. pneumoniae isolate from bacteremia and the resistance mechanisms. Our findings highlight the urgent need for infection control of such strain to prevent it from becoming an extensive-drug resistant clone.
Collapse
Affiliation(s)
- Xiaolong Ma
- Department of Respiratory Medicine, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, People’s Republic of China
| | - Xiaodong Lv
- Department of Respiratory Medicine, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, People’s Republic of China
| | - Sihan Feng
- Department of Respiratory Medicine, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, People’s Republic of China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Hao Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Feng Gao
- Department of Respiratory Medicine, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|