1
|
Liao H, Chen Y, He Y, Zou M, Zheng L, Liao J, Rana K, Qian W, Ding Y. Stress responsive glycosylphosphatidylinositol-anchored protein SsGSP1 contributes to Sclerotinia sclerotiorum virulence. Virulence 2025; 16:2503434. [PMID: 40353429 PMCID: PMC12091936 DOI: 10.1080/21505594.2025.2503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Fungal cell wall acts as a defense barrier, shielding the cell from varying environmental stresses. Cell wall proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins, are involved in swift and appropriate responses to minor environmental changes in fungi. However, the roles of these proteins in the pathogenic Sclerotinia sclerotiorum remain largely unexplored. Here, we identified a novel GPI-anchored protein in S. sclerotiorum, SsGSP1, comprising a Kre9_KNH domain. SsGSP1 was upregulated during infection, and the loss-of-function mutants of SsGSP1 exhibited the compromised cell wall integrity and reduced β-glucan content. During inoculation on Arabidopsis thaliana, Nicotiana benthamiana, and Brassica napus, the SsGSP1-deletion strains demonstrated the decreased virulence. The transgenic A. thaliana line carrying the sRNA targeting SsGSP1 enhanced resistance to S. sclerotiorum via Host-Induced Gene Silencing (HIGS). The SsGSP1-deficient strains displayed the heightened sensitivity to various stresses, including osmotic pressure, oxidative stress, and heat shock. The yeast two-hybrid and BiFC assays confirmed that SsGSP1 interacted with the key stress-related proteins catalase SsCat2, heat shock protein Sshsp60, and ABC transporter SsBMR1. Accordingly, transcriptome analysis revealed that the disruption of SsGSP1 downregulated the expression of genes involved in oxidative stress response, heat shock response, and chemical agent resistance. These results collectively delineate the intricate role of GPI-anchored protein SsGSP1 in β-glucan, cell wall integrity, and virulence and may act as a potential surface sensor to elicit signal transduction in response to environmental stresses in S. sclerotiorum.
Collapse
Affiliation(s)
- Hongmei Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yujia He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Minghong Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lintao Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jinghang Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Razmi M, Kim J, Chinnici J, Busarajan S, Vuppalapaty H, Lankipalli D, Li R, Maddi A. Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. J Fungi (Basel) 2024; 10:525. [PMID: 39194851 DOI: 10.3390/jof10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Candida albicans is an oral mucosal commensal fungus that transforms into an opportunistic pathogen under specific conditions, including immunosuppression. It causes oral and systemic candidiasis, which results in a significant health burden. Furthermore, an alarming rise in antifungal drug resistance in Candida species raises the urgent need for novel drugs and drug targets. C. albicans Dfg5 and Dcw1 are homologous cell wall alpha-1,6-mannosidases with critical functions and represent potential new drug targets. Our past studies have shown that Dfg5 and Dcw1 function in cell wall biogenesis through the cross-linking of glycoproteins into the cell wall, thus playing a key role in cell wall integrity. Additionally, Dfg5 and Dcw1 are required for hyphal morphogenesis. However, the exact functions of Dfg5 and Dcw1 in cell wall integrity, hyphal morphogenesis, and pathogenesis are not known. In this study, we determined the relation of Dfg5 and Dcw1 with Hog1 MAPK, which plays a key role in cell wall integrity via the regulation of chitin synthesis in C. albicans. Additionally, we also determined the effects of dfg5 and dcw1 mutations on the gene expression of transcriptional regulators of hyphal morphogenesis. Furthermore, we determined the effects of dfg5 and dcw1 mutations on pathogenesis in a mouse model of oral candidiasis. Our results demonstrate that dfg5 and dcw1 mutations, as well as a hog1 knockout mutation, result in the dysregulation of chitin synthesis, resulting in a cell separation defect. Heterozygous and conditional mutations in dfg5 and dcw1 resulted in decreased transcriptional levels of cst20, a positive regulator of hyphal morphogenesis. However, dfg5 and dcw1 mutations resulted in increased levels of all the five negative regulators of hyphal morphogenesis-Tup1, Nrg1, Mig1, Rbf1, and Rfg1. Additionally, Tup1 levels were significantly higher than other negative regulators, indicating that Dfg5 and Dcw1 function in hyphal morphogenesis by repressing Tup1. Finally, dfg5 and dcw1 mutations affected the ability of C. albicans to cause oral candidiasis in mice. Thus, the cell wall glycosidases Dfg5 and Dcw1 are required for virulence and pathogenesis and represent novel drug targets.
Collapse
Affiliation(s)
- Maryam Razmi
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Jaewon Kim
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Jennifer Chinnici
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Sujay Busarajan
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Hema Vuppalapaty
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Deepika Lankipalli
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Rui Li
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Abhiram Maddi
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Division of Regenerative Sciences & Periodontics, Department of Advanced Specialty Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Giner-Llorca M, Locascio A, Del Real JA, Marcos JF, Manzanares P. Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:6811-6829. [PMID: 37688596 PMCID: PMC10589166 DOI: 10.1007/s00253-023-12749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Antifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae. We took advantage of this and used a model laboratory strain of S. cerevisiae to gain insight into the mode of action of PeAfpA by combining (i) transcriptional profiling, (ii) PeAfpA sensitivity analyses of deletion mutants available in the S. cerevisiae genomic deletion collection and (iii) cell biology studies using confocal microscopy. Results highlighted and confirmed the role of the yeast cell wall (CW) in the interaction with PeAfpA, which can be internalized through both energy-dependent and independent mechanisms. The combined results also suggest an active role of the CW integrity (CWI) pathway and the cAMP-PKA signalling in the PeAfpA killing mechanism. Besides, our studies revealed the involvement of phosphatidylinositol metabolism and the participation of ROX3, which codes for the subunit 19 of the RNA polymerase II mediator complex, in the yeast defence strategy. In conclusion, our study provides clues about both the killing mechanism of PeAfpA and the fungus defence strategies against the protein, suggesting also targets for the development of new antifungals. KEY POINTS: • PeAfpA is a cell-penetrating protein with inhibitory activity against S. cerevisiae. • The CW integrity (CWI) pathway is a key player in the PeAfpA killing mechanism. • Phosphatidylinositol metabolism and ROX3 are involved in the yeast defence strategy.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Antonella Locascio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Javier Alonso Del Real
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
4
|
Cai M, Wu X, Liang X, Hu H, Liu Y, Yong T, Li X, Xiao C, Gao X, Chen S, Xie Y, Wu Q. Comparative proteomic analysis of two divergent strains provides insights into thermotolerance mechanisms of Ganoderma lingzhi. Fungal Genet Biol 2023; 167:103796. [PMID: 37146899 DOI: 10.1016/j.fgb.2023.103796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.
Collapse
Affiliation(s)
- Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tianqiao Yong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiangmin Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
5
|
Extracellular targeting of Neurospora crassa cell wall and secreted glycoproteins by DFG-5. Fungal Genet Biol 2022; 160:103686. [DOI: 10.1016/j.fgb.2022.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
|
6
|
Zhang Y, Zhuang WY. MAPK Cascades Mediating Biocontrol Activity of Trichoderma brevicrassum Strain TC967. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2762-2775. [PMID: 35191703 DOI: 10.1021/acs.jafc.1c05622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trichoderma brevicrassum strain TC967 is a novel biological control agent (BCA) against the plant pathogen Rhizoctonia solani and promotes plant growth. Mitogen-activated protein kinase (MAPK) cascades are involved in a variety of physiological functions of Trichoderma, but functions of each MAPK in regulating biocontrol have not been characterized in a single Trichoderma strain. In this study, we assembled and annotated the genome of strain TC967 and identified its three MAPK gene sequences. Functions of Fus3-, Slt2-, and Hog1-MAPK in strain TC967 were dissected. All three MAPKs were involved in hyphal growth. Hog1-MAPK was essential for conidiation and tolerance to saline/osmotic stress. Both Fus3- and Slt2-MAPK deletion mutants reduced cell-wall integrity (CWI) and increased the activities of chitinase and protease. The growth of Rhizoctoniasolani was further inhibited by volatile organic compounds (VOCs) and secondary metabolites produced by Fus3- and Slt2-MAPK deletion mutants, respectively. Biocontrol assays demonstrated that Fus3- and Slt2-MAPK deletion mutants were considerably more effective in disease control than the wild-type strain. RNA-seq analysis revealed that MAPK collectively played a major role in regulating biocontrol-related gene expressions, including the genes in charge of secondary metabolism, fungal cell wall-degrading enzymes (FCWDEs), and small secreted cysteine-rich proteins (SSCPs).
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|