1
|
Kasahara K, Seiffarth J, Stute B, von Lieres E, Drepper T, Nöh K, Kohlheyer D. Unveiling microbial single-cell growth dynamics under rapid periodic oxygen oscillations. LAB ON A CHIP 2025; 25:2234-2246. [PMID: 40159892 DOI: 10.1039/d5lc00065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Microbial metabolism and growth are tightly linked to oxygen (O2). Microbes experience fluctuating O2 levels in natural environments; however, our understanding of how cells respond to fluctuating O2 over various time scales remains limited due to challenges in observing microbial growth at single-cell resolution under controlled O2 conditions and in linking individual cell growth with the specific O2 microenvironment. We performed time-resolved microbial growth analyses at single-cell resolution under a temporally controlled O2 supply. A multilayer microfluidic device was developed, featuring a gas supply above a cultivation layer, separated by a thin membrane enabling efficient gas transfer. This platform allows microbial cultivation under constant, dynamic, and oscillating O2 conditions. Automated time-lapse microscopy and deep-learning-based image analysis provide access to spatiotemporally resolved growth data at the single-cell level. O2 switching within tens of seconds, coupled with precise microenvironment monitoring, allows us to accurately correlate cellular growth with local O2 concentrations. Growing Escherichia coli microcolonies subjected to varying O2 oscillation periods show distinct growth dynamics characterized by response and recovery phases. The comprehensive growth data and insights gained from our unique platform are a crucial step forward to systematically study cell response and adaptation to fluctuating O2 environments at single-cell resolution.
Collapse
Affiliation(s)
- Keitaro Kasahara
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Johannes Seiffarth
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Birgit Stute
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Eric von Lieres
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
2
|
Di Martino R, Picot A, Mitri S. Oxidative stress changes interactions between 2 bacterial species from competitive to facilitative. PLoS Biol 2024; 22:e3002482. [PMID: 38315734 PMCID: PMC10881020 DOI: 10.1371/journal.pbio.3002482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/21/2024] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Knowing how species interact within microbial communities is crucial to predicting and controlling community dynamics, but interactions can depend on environmental conditions. The stress-gradient hypothesis (SGH) predicts that species are more likely to facilitate each other in harsher environments. Even if the SGH gives some intuition, quantitative modeling of the context-dependency of interactions requires understanding the mechanisms behind the SGH. In this study, we show with both experiments and a theoretical analysis that varying the concentration of a single compound, linoleic acid (LA), modifies the interaction between 2 bacterial species, Agrobacterium tumefaciens and Comamonas testosteroni, from competitive at a low concentration, to facilitative at higher concentrations where LA becomes toxic for one of the 2 species. We demonstrate that the mechanism behind facilitation is that one species is able to reduce reactive oxygen species (ROS) that are produced spontaneously at higher concentrations of LA, allowing for short-term rescue of the species that is sensitive to ROS and longer coexistence in serial transfers. In our system, competition and facilitation between species can occur simultaneously, and changing the concentration of a single compound can alter the balance between the two.
Collapse
Affiliation(s)
- Rita Di Martino
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Aurore Picot
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
4
|
van Dalen R, Elsherbini AMA, Harms M, Alber S, Stemmler R, Peschel A. Secretory IgA impacts the microbiota density in the human nose. MICROBIOME 2023; 11:233. [PMID: 37865781 PMCID: PMC10589987 DOI: 10.1186/s40168-023-01675-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Respiratory mucosal host defense relies on the production of secretory IgA (sIgA) antibodies, but we currently lack a fundamental understanding of how sIgA is induced by contact with microbes and how such immune responses may vary between humans. Defense of the nasal mucosal barrier through sIgA is critical to protect from infection and to maintain homeostasis of the microbiome, which influences respiratory disorders and hosts opportunistic pathogens. METHODS We applied IgA-seq analysis to nasal microbiota samples from male and female healthy volunteers, to identify which bacterial genera and species are targeted by sIgA on the level of the individual host. Furthermore, we used nasal sIgA from the same individuals in sIgA deposition experiments to validate the IgA-seq outcomes. CONCLUSIONS We observed that the amount of sIgA secreted into the nasal mucosa by the host varied substantially and was negatively correlated with the bacterial density, suggesting that nasal sIgA limits the overall bacterial capacity to colonize. The interaction between mucosal sIgA antibodies and the nasal microbiota was highly individual with no obvious differences between potentially invasive and non-invasive bacterial species. Importantly, we could show that for the clinically relevant opportunistic pathogen and frequent nasal resident Staphylococcus aureus, sIgA reactivity was in part the result of epitope-independent interaction of sIgA with the antibody-binding protein SpA through binding of sIgA Fab regions. This study thereby offers a first comprehensive insight into the targeting of the nasal microbiota by sIgA antibodies. It thereby helps to better understand the shaping and homeostasis of the nasal microbiome by the host and may guide the development of effective mucosal vaccines against bacterial pathogens. Video Abstract.
Collapse
Affiliation(s)
- Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
- Present Address: Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ahmed M A Elsherbini
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Mareike Harms
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Svenja Alber
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Regine Stemmler
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Shibasaki S, Mobilia M, Mitri S. Exclusion of the fittest predicts microbial community diversity in fluctuating environments. J R Soc Interface 2021; 18:20210613. [PMID: 34610260 PMCID: PMC8492180 DOI: 10.1098/rsif.2021.0613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
Microorganisms live in environments that inevitably fluctuate between mild and harsh conditions. As harsh conditions may cause extinctions, the rate at which fluctuations occur can shape microbial communities and their diversity, but we still lack an intuition on how. Here, we build a mathematical model describing two microbial species living in an environment where substrate supplies randomly switch between abundant and scarce. We then vary the rate of switching as well as different properties of the interacting species, and measure the probability of the weaker species driving the stronger one extinct. We find that this probability increases with the strength of demographic noise under harsh conditions and peaks at either low, high, or intermediate switching rates depending on both species' ability to withstand the harsh environment. This complex relationship shows why finding patterns between environmental fluctuations and diversity has historically been difficult. In parameter ranges where the fittest species was most likely to be excluded, however, the beta diversity in larger communities also peaked. In sum, how environmental fluctuations affect interactions between a few species pairs predicts their effect on the beta diversity of the whole community.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|