1
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
2
|
Sharon I, Quijada NM, Pasolli E, Fabbrini M, Vitali F, Agamennone V, Dötsch A, Selberherr E, Grau JH, Meixner M, Liere K, Ercolini D, de Filippo C, Caderni G, Brigidi P, Turroni S. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 2022; 14:2872. [PMID: 35889831 PMCID: PMC9323970 DOI: 10.3390/nu14142872] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.
Collapse
Affiliation(s)
- Itai Sharon
- Migal-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Narciso Martín Quijada
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (N.M.Q.); (E.S.)
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, A-3430 Tulln an der Donau, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy; (E.P.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Marco Fabbrini
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.F.); (S.T.)
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.d.F.)
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (N.M.Q.); (E.S.)
| | - José Horacio Grau
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
- Center for Species Survival, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Martin Meixner
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
| | - Karsten Liere
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy; (E.P.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Carlotta de Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.d.F.)
| | - Giovanna Caderni
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.F.); (S.T.)
| |
Collapse
|
3
|
Molecular Detection of Malpighamoeba mellificae in Honey Bees. Vet Sci 2022; 9:vetsci9030148. [PMID: 35324875 PMCID: PMC8949188 DOI: 10.3390/vetsci9030148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Malpighamoeba mellificae is a protozoan that infects the Malpighian tubules of honey bees. The amoebae, ingested as cysts, develop into trophozoites that feed upon tubule epithelia. The resulting damage of the Malpighian tubules can induce an imbalance of waste excretion and hemolymph exchange. This causes the so-called amoebiasis disease in adult bees, which may co-occur with Nosema infections. Most reports of this amoeba are from the 1960s and earlier, and knowledge of the disease and its spreading is very poor. The lack of any genetic marker for the species hampers its sensitive identification using molecular tools and gaining knowledge on its epidemiology. Here, we present a diagnostic RT-qPCR assay, consisting of two primers and one probe that were developed based on 18S rRNA sequences of the amoeba, generated with metagenomic sequencing of Malpighian tubules with and without M. mellificae cysts. The assay was initially tested and adjusted with samples microscopically tested for the presence of M. mellificae cysts. Later, it was validated and material with unknown infection status was tested. The sensitive diagnostic Malpighamoeba disease 18S assay is now ready to be applied for honey bee health monitoring purposes and to investigate the prevalence of M. mellificae in more detail.
Collapse
|