1
|
Kumari R, Chaturvedi V, Pithi M, Pati AK. Microsolvation-Driven Hours-Long Spectral Dynamics in Phenoxazine Dyes. J Phys Chem A 2025; 129:82-93. [PMID: 39688473 DOI: 10.1021/acs.jpca.4c06314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The phenoxazine class of dyes has found widespread applications in chemistry and biology for more than a century, particularly for lipid membrane studies. Here, we report a general phenomenon on the ensemble spectral stability of traditional phenoxazine class of dyes (nile red, cresyl violet, and nile blue) that exhibit hours-long microstructural transitions reflected through systematic changes of electronic spectra over an hour. Mechanistic investigations reveal that such spectral dynamics of the dyes can be mitigated by tuning microenvironments, where microsolvation plays an underlying role. These microsolvation-induced microstructural changes in a single dye species tend to follow zeroth-order kinetics. The half-life values of such processes systematically vary with solvent hydrogen bonding strength and ionic radius of the dyes' counteranions. In so doing, using a model lipid membrane, we demonstrate that the spectral response of a phenoxazine dye must be utilized appropriately for studying membrane properties. These findings of the phenoxazine class of dyes are of high significance for their careful applications in chemistry and biology.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vineeta Chaturvedi
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Mudit Pithi
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Avik K Pati
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
2
|
Coradello G, Setti C, Donno R, Ghibaudi M, Catalano F, Tirelli N. A Quantitative Re-Assessment of Microencapsulation in (Pre-Treated) Yeast. Molecules 2024; 29:539. [PMID: 38276617 PMCID: PMC10818300 DOI: 10.3390/molecules29020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Most hydrophobes easily diffuse into yeast cells, where they experience reduced evaporation and protection from oxidation, thus allowing inherently biocompatible encapsulation processes. Despite a long-standing industrial interest, the effect of parameters such as how is yeast pre-treated (extraction with ethanol, plasmolysis with hypertonic NaCl, depletion to cell walls), the polarity of the hydrophobes and the process conditions are still not fully understood. Here, we have developed thorough analytical protocols to assess how the effects of the above on S. cerevisiae's morphology, permeability, and encapsulation efficiency, using three differently polar hydrophobes (linalool, 1,6-dihydrocarvone, limonene) and three separate processes (hydrophobes as pure 'oils', water dispersions, or acetone solutions). The harsher the pre-treatment (depleted > plasmolyzed/extracted > untreated cells), the easier the diffusion into yeast became, and the lower both encapsulation efficiency and protection from evaporation, possibly due to denaturation/removal of lipid-associated (membrane) proteins. More hydrophobic terpenes performed worst in encapsulation as pure 'oils' or in water dispersion, but much less of a difference existed in acetone. This indicates the specific advantage of solvents/dispersants for 'difficult' compounds, which was confirmed by principal component analysis; furthering this concept, we have used combinations of hydrophobes (e.g., linalool and α-tocopherol), with one acting as solvent/enhancer for the other. Our results thus indicate advantages in using untreated yeast and-if necessary-processes based on solvents/secondary hydrophobes.
Collapse
Affiliation(s)
- Giulia Coradello
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Chiara Setti
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| | - Roberto Donno
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| | - Matilde Ghibaudi
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy;
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| |
Collapse
|
3
|
Ouellet B, Morneau Z, Abdel-Mawgoud AM. Nile red-based lipid fluorometry protocol and its use for statistical optimization of lipids in oleaginous yeasts. Appl Microbiol Biotechnol 2023; 107:7313-7330. [PMID: 37741936 DOI: 10.1007/s00253-023-12786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
As lipogenic yeasts are becoming increasingly harnessed as biofactories of oleochemicals, the availability of efficient protocols for the determination and optimization of lipid titers in these organisms is necessary. In this study, we optimized a quick, reliable, and high-throughput Nile red-based lipid fluorometry protocol adapted for oleaginous yeasts and validated it using different approaches, the most important of which is using gas chromatography coupled to flame ionization detection and mass spectrometry. This protocol was applied in the optimization of the concentrations of ammonium chloride and glycerol for attaining highest lipid titers in Rhodotorula toruloides NRRL Y-6987 and Yarrowia lipolytica W29 using response surface central composite design (CCD). Results of this optimization showed that the optimal concentration of ammonium chloride and glycerol is 4 and 123 g/L achieving a C/N ratio of 57 for R. toruloides, whereas for Y. lipolytica, concentrations are 4 and 139 g/L with a C/N ratio of 61 for Y. lipolytica. Outside the C/N of 33 to 74 and 45 to 75, respectively, for R. toruloides and Y. lipolytica, lipid productions decrease by more than 10%. The developed regression models and response surface plots show the importance of the careful selection of C/N ratio to attain maximal lipid production. KEY POINTS: • Nile red (NR)-based lipid fluorometry is efficient, rapid, cheap, high-throughput. • NR-based lipid fluorometry can be well used for large-scale experiments like DoE. • Optimal molar C/N ratio for maximum lipid production in lipogenic yeasts is ~60.
Collapse
Affiliation(s)
- Benjamin Ouellet
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada
| | - Zacharie Morneau
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada
| | - Ahmad M Abdel-Mawgoud
- Institute of Integrative Biology and Systems, Laval University, Pavillon Charles-Eugène-Marchand, 1030 Ave. de la Médecine,, QC, QC, G1V 0A6, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, 1045 Ave. de la Médecine, QC, Quebec, G1V 0A6, Canada.
| |
Collapse
|
4
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Morales-Palomo S, Liras M, González-Fernández C, Tomás-Pejó E. Key role of fluorescence quantum yield in Nile Red staining method for determining intracellular lipids in yeast strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:37. [PMID: 35440008 PMCID: PMC9019942 DOI: 10.1186/s13068-022-02135-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
Abstract
Background Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids. Recent research efforts have been focused on developing rapid and accurate fluorometric methods for the quantification of intracellular yeast lipids. Nevertheless, the current methods are often tedious and/or exhibit low reproducibility. Results This work evaluated the reliability of different fluorescence measurements (fluorescence intensity, total area and fluorescence quantum yield) using Nile Red as lipid dye in two yeast strains (Yarrowia lipolytica ACA-DC 50109 and Cutaneotrichosporon curvatum NRRL-Y-1511). Different standard curves were obtained for each yeast specie. Fermentation tests were carried with 6-month difference to evaluate the effect of the fluorometer lamp lifetime on lipid quantification. Conclusions Fluorescence quantum yield presented the most consistent measurements along time and the closer estimations when compared with lipids obtained by conventional methods (extraction and gravimetrical determination). The need of using fluorescence quantum yield to estimate intracellular lipids, which is not the common trend in studies focused on microbial lipid production, was stressed. The information here provided will surely enable more accurate results comparison. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02135-9.
Collapse
|
6
|
Gil F, Laiolo J, Bayona-Pacheco B, Cannon RD, Ferreira-Pereira A, Carpinella MC. Extracts from Argentinian native plants reverse fluconazole resistance in Candida species by inhibiting the efflux transporters Mdr1 and Cdr1. BMC Complement Med Ther 2022; 22:264. [PMID: 36224581 PMCID: PMC9555179 DOI: 10.1186/s12906-022-03745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of multidrug resistance (MDR) associated with the overexpression of the efflux transporters Mdr1 and Cdr1 in Candida species impedes antifungal therapies. The urgent need for novel agents able to inhibit the function of both pumps, led us to evaluate this property in 137 extracts obtained from Argentinian plants. METHODS The ability of the extracts to reverse efflux pump-mediated MDR was determined with an agar chemosensitization assay using fluconazole (FCZ) resistant Mdr1- and Cdr1-overexpressing clinical isolates of Candida albicans and Candida glabrata as well as Saccharomyces cerevisiae strains selectively expressing Mdr1 (AD/CaMDR1) or Cdr1 (AD/CaCDR1). The resistance-reversing activity of the most potent extracts was further confirmed using a Nile Red accumulation assay. RESULTS Fifteen plant extracts overcame the FCZ resistance of Candida albicans 1114, which overexpresses CaMdr1 and CaCdr1, and AD/CaMDR1, with those from Acalypha communis and Solanum atriplicifolium being the most effective showing 4- to 16-fold reversal of resistance at concentrations ≥ 25 µg/mL. Both extracts, and to a lesser extent that from Pterocaulon alopecuroides, also restored FCZ sensitivity in CgCdr1-overexpressing C. glabrata 109 and in AD/CaCDR1 with fold reversal values ranging from 4 to 32 and therefore demonstrating a dual effect against Mdr1 and Cdr1. Both, A. communis and S. atriplicifolium extracts at concentrations ≥ 12.5 and ≥ 25 µg/mL, respectively, increased the intracellular Nile Red accumulation in all yeast strains overexpressing efflux pumps. CONCLUSIONS The non-toxic and highly active extracts from A. communis and S. atripicifolium, provide promising sources of compounds for potentiating the antifungal effect of FCZ by blocking the efflux function of Mdr1 and Cdr1 transporters.
Collapse
Affiliation(s)
- Florimar Gil
- grid.411954.c0000 0000 9878 4966Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - Jerónimo Laiolo
- grid.411954.c0000 0000 9878 4966Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - Brayan Bayona-Pacheco
- grid.412188.60000 0004 0486 8632Department of Medicine, Division of Health Science, Universidad del Norte, Km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, 081007 Barranquilla, Colombia ,grid.8536.80000 0001 2294 473XLaboratory of Microbial Biochemistry, Institute of Microbiology Paulo de Góes, Universidade Federal Do Rio de Janeiro, Ilha Do Fundão, Av. Carlos Chagas Filho, 373, Bloco I, Sala 44, Rio de Janeiro, RJ 21949-902 Brazil
| | - Richard D. Cannon
- grid.29980.3a0000 0004 1936 7830Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, PO Box 647, Dunedin, 9054 New Zealand
| | - Antonio Ferreira-Pereira
- grid.8536.80000 0001 2294 473XLaboratory of Microbial Biochemistry, Institute of Microbiology Paulo de Góes, Universidade Federal Do Rio de Janeiro, Ilha Do Fundão, Av. Carlos Chagas Filho, 373, Bloco I, Sala 44, Rio de Janeiro, RJ 21949-902 Brazil
| | - María Cecilia Carpinella
- grid.411954.c0000 0000 9878 4966Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| |
Collapse
|
7
|
Mohanty S, Patel P, Jha E, Panda PK, Kumari P, Singh S, Sinha A, Saha AK, Kaushik NK, Raina V, Verma SK, Suar M. In vivo intrinsic atomic interaction infer molecular eco-toxicity of industrial TiO 2 nanoparticles via oxidative stress channelized steatosis and apoptosis in Paramecium caudatum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113708. [PMID: 35667312 DOI: 10.1016/j.ecoenv.2022.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The ecotoxicological effect of after-usage released TiO2 nanoparticles in aquatic resources has been a major concern owing to their production and utilization in different applications. Addressing the issue, this study investigates the detailed in vivo molecular toxicity of TiO2 nanoparticles with Paramecium caudatum. TiO2 nanoparticles were synthesized at a lab scale using high energy ball milling technique; characterized for their physicochemical properties and investigated for their ecotoxicological impact on oxidative stress, steatosis, and apoptosis of cells through different biochemical analysis, flow cytometry, and fluorescent microscopy. TiO2 nanoparticles; TiO2 (N15); of size 36 ± 12 nm were synthesized with a zeta potential of - 20.2 ± 8.8 mV and bandgap of 4.6 ± 0.3 eV and exhibited a blue shift in UV-spectrum. Compared to the Bulk TiO2, the TiO2 (N15) exhibited higher cytotoxicity with a 24 h LC50 of 202.4 µg/ml with P. Caudatum. The mechanism was elucidated as the size and charge-dependent internalization of nanoparticles leading to abnormal physiological metabolism in oxidative stress, steatosis, and apoptosis because of their influential effect on the activity of metabolic proteins like SOD, GSH, MDA, and catalase. The study emphasized the controlled usage TiO2 nanoparticles in daily activity with a concern for ecological and biomedical aspects.
Collapse
Affiliation(s)
- Swabhiman Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Brno 60300, Czech Republic; Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Sonal Singh
- Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ashish Kumar Saha
- Advanced Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
8
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Lee HS, Kim Y. Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans. J Microbiol Biotechnol 2022; 32:37-45. [PMID: 34750288 PMCID: PMC9628827 DOI: 10.4014/jmb.2110.10014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
The fungal cell wall and membrane are the principal targets of antifungals. Herein, we report that myricetin exerts antifungal activity against Candida albicans by damaging the cell wall integrity and notably enhancing the membrane permeability. In the presence of sorbitol, an osmotic protectant, the minimum inhibitory concentration (MIC) of myricetin against C. albicans increased from 20 to 40 and 80 μg/ml in 24 and 72 h, respectively, demonstrating that myricetin disturbs the cell wall integrity of C. albicans. Fluorescence microscopic images showed the presence of propidium iodidestained C. albicans cells, indicating the myricetin-induced initial damage of the cell membrane. The effects of myricetin on the membrane permeability of C. albicans cells were assessed using crystal violet-uptake and intracellular material-leakage assays. The percentage uptakes of crystal violet for myricetin-treated C. albicans cells at 1×, 2×, and 4× the MIC of myricetin were 36.5, 60.6, and 79.4%, respectively, while those for DMSO-treated C. albicans cells were 28.2, 28.9, and 29.7%, respectively. Additionally, myricetin-treated C. albicans cells showed notable DNA and protein leakage, compared with the DMSO-treated controls. Furthermore, treatment of C. albicans cells with 1× the MIC of myricetin showed a 17.2 and 28.0% reduction in the binding of the lipophilic probes diphenylhexatriene and Nile red, respectively, indicating that myricetin alters the lipid components or order in the C. albicans cell membrane, leading to increased membrane permeability. Therefore, these data will provide insights into the pharmacological worth of myricetin as a prospective antifungal for treating C. albicans infections.
Collapse
Affiliation(s)
- Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejongsi 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea,Corresponding author Phone: +82-43-649-1346 Fax: +82-43-649-1341 E-mail:
| |
Collapse
|
10
|
Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021; 26:molecules26113123. [PMID: 34073703 PMCID: PMC8197184 DOI: 10.3390/molecules26113123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Besides their best-known uses in the food and fermentation industry, yeasts have also found application as microcapsules. In the encapsulation process, exogenous and most typically hydrophobic compounds diffuse and end up being passively entrapped in the cell body, and can be released upon application of appropriate stimuli. Yeast cells can be employed either living or dead, intact, permeabilized, or even emptied of all their original cytoplasmic contents. The main selling points of this set of encapsulation technologies, which to date has predominantly targeted food and-to a lesser extent-pharmaceutical applications, are the low cost, biodegradability and biocompatibility of the capsules, coupled to their sustainable origin (e.g., spent yeast from brewing). This review aims to provide a broad overview of the different kinds of yeast-based microcapsules and of the main physico-chemical characteristics that control the encapsulation process and its efficiency.
Collapse
|