1
|
Webb JR, Andersson P, Sim E, Zahedi A, Donald A, Hoang T, Watt AE, Agius JE, Donato CM, Cummins ML, Zulfiqar T, Nghiem S, Lin C, Menouhos D, Leong LEX, Baird R, Kennedy K, Cooley L, Speers D, Lim CK, de Ligt J, Ferdinand A, Glass K, Kirk MD, Djordjevic SP, Sloggett C, Horan K, Seemann T, Sintchenko V, Jennison AV, Howden BP. Implementing a national programme of pathogen genomics for public health: the Australian Pathogen Genomics Program (AusPathoGen). THE LANCET. MICROBE 2025; 6:100969. [PMID: 39389079 DOI: 10.1016/j.lanmic.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Delivering large-scale routine pathogen genomics surveillance for public health is of considerable interest, although translational research models that promote national-level implementation are not well defined. We describe the development and deployment of the Australian Pathogen Genomics Program (AusPathoGen), a comprehensive national partnership between academia, public health laboratories, and public health agencies that commenced in January, 2021. Successfully establishing and delivering a national programme requires inclusive and transparent collaboration between stakeholders, defined and clear focus on public health priorities, and support for strengthening national genomics capacity. Major enablers for delivering such a programme include technical solutions for data integration and analysis, such as the genomics surveillance platform AusTrakka, standard bioinformatic analysis methods, and national ethics and data sharing agreements that promote nationally integrated surveillance systems. Training of public health officials to interpret and act on genomic data is crucial, and evaluation and cost-effectiveness programmes will provide a benchmark and evidence for sustainable investment in genomics nationally and globally.
Collapse
Affiliation(s)
- Jessica R Webb
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Eby Sim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia; Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Alireza Zahedi
- Public and Environmental Health, Pathology Queensland Queensland Health, Brisbane, QLD, Australia
| | - Angela Donald
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tuyet Hoang
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jessica E Agius
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia; Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Celeste M Donato
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia; Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, NSW, Australia
| | - Tehzeeb Zulfiqar
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Son Nghiem
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Chantel Lin
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Rob Baird
- Territory Pathology, Royal Darwin Hospital, Darwin, NT, Australia
| | - Karina Kennedy
- Department of Clinical Microbiology and Infectious Diseases, Canberra Health Services, Australian National University Medical School of Medicine and Psychology, Canberra, ACT, Australia
| | - Louise Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia; Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David Speers
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Perth, WA, Australia
| | - Chuan Kok Lim
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joep de Ligt
- Institute of Environmental Science and Research, Kenepuru, Porirua, New Zealand
| | - Angeline Ferdinand
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia; Centre for Health Policy, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Katie Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia; Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, NSW, Australia
| | - Clare Sloggett
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia; Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Amy V Jennison
- Public and Environmental Health, Pathology Queensland Queensland Health, Brisbane, QLD, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, VIC, Australia; Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
2
|
Timme RE, Pfefer T, Bias CH, Allard MW, Huang X, Strain E, Balkey M. A Comprehensive Guide to Quality Assessment and Data Submission for Genomic Surveillance of Enteric Pathogens. Methods Mol Biol 2025; 2852:199-209. [PMID: 39235746 DOI: 10.1007/978-1-0716-4100-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This document outlines the steps necessary to assemble and submit the standard data package required for contributing to the global genomic surveillance of enteric pathogens. Although targeted to GenomeTrakr laboratories and collaborators, these protocols are broadly applicable for enteric pathogens collected for different purposes. There are five protocols included in this chapter: (1) quality control (QC) assessment for the genome sequence data, (2) validation for the contextual data, (3) data submission for the standard pathogen package or Pathogen Data Object Model (DOM) to the public repository, (4) viewing and querying data at NCBI, and (5) data curation for maintaining relevance of public data. The data are available through one of the International Nucleotide Sequence Database Consortium (INSDC) members, with the National Center for Biotechnology Information (NCBI) being the primary focus of this document. NCBI Pathogen Detection is a custom dashboard at NCBI that provides easy access to pathogen data plus results for a standard suite of automated cluster and genotyping analyses important for informing public health and regulatory decision-making.
Collapse
Affiliation(s)
- Ruth E Timme
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA.
| | - Tina Pfefer
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - C Hope Bias
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN, USA
| | - Marc W Allard
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland - College Park, College Park, MD, USA
| | - Errol Strain
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| | - Maria Balkey
- Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, USA
| |
Collapse
|
3
|
Merda D, Vila-Nova M, Bonis M, Boutigny AL, Brauge T, Cavaiuolo M, Cunty A, Regnier A, Sayeb M, Vingadassalon N, Yvon C, Chesnais V. Unraveling the impact of genome assembly on bacterial typing: a one health perspective. BMC Genomics 2024; 25:1059. [PMID: 39516732 PMCID: PMC11545336 DOI: 10.1186/s12864-024-10982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In the context of pathogen surveillance, it is crucial to ensure interoperability and harmonized data. Several surveillance systems are designed to compare bacteria and identify outbreak clusters based on core genome MultiLocus Sequence Typing (cgMLST). Among the different approaches available to generate bacterial cgMLST, our research used an assembly-based approach (chewBBACA tool). METHODS Simulations of short-read sequencing were conducted for 5 genomes of 27 pathogens of interest in animal, plant, and human health to evaluate the repeatability and reproducibility of cgMLST. Various quality parameters, such as read quality and depth of sequencing were applied, and several read simulations and genome assemblies were repeated using three tools: SPAdes, Unicycler and Shovill. In vitro sequencing were also used to evaluate assembly impact on cgMLST results, for six bacterial species: Bacillus thuringiensis, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Vibrio parahaemolyticus and Xylella fastidiosa. RESULTS The results highlighted variability in cgMLST, which not only related to the assembly tools, but also induced by the intrinsic composition of the genomes themselves. This variability observed in simulated sequencing was further validated with real data for six of the bacterial pathogens studied. CONCLUSION This highlights that the intrinsic genome composition affects assembly and resulting cgMLST profiles, and that variability in bioinformatics tools can induce a bias in cgMLST profiles. In conclusion, we propose that the completeness of cgMLST schemes should be considered when clustering strains.
Collapse
Affiliation(s)
- Déborah Merda
- Université Paris Est, ANSES, Laboratory for Food Safety, SPAAD unit, Maisons-Alfort, F-94701, France.
| | - Meryl Vila-Nova
- Université Paris Est, ANSES, Laboratory for Food Safety, SPAAD unit, Maisons-Alfort, F-94701, France
| | - Mathilde Bonis
- Université Paris Est, ANSES, Laboratory for Food Safety, SBCL unit, Maisons-Alfort, F-94701, France
| | - Anne-Laure Boutigny
- ANSES, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, Angers cedex 01, 49044, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit (B3PA), Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Marina Cavaiuolo
- Université Paris Est, ANSES, Laboratory for Food Safety, SBCL unit, Maisons-Alfort, F-94701, France
| | - Amandine Cunty
- ANSES, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, Angers cedex 01, 49044, France
| | - Antoine Regnier
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit (B3PA), Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Maroua Sayeb
- Université Paris Est, ANSES, Laboratory for Food Safety, SEL unit, Maisons-Alfort, F-94701, France
| | - Noémie Vingadassalon
- Université Paris Est, ANSES, Laboratory for Food Safety, SBCL unit, Maisons-Alfort, F-94701, France
| | - Claire Yvon
- Université Paris Est, ANSES, Laboratory for Food Safety, SEL unit, Maisons-Alfort, F-94701, France
| | - Virginie Chesnais
- Université Paris Est, ANSES, Laboratory for Food Safety, SPAAD unit, Maisons-Alfort, F-94701, France
| |
Collapse
|
4
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Strasheim W, Lowe M, Smith AM, Etter EMC, Perovic O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics (Basel) 2024; 13:543. [PMID: 38927209 PMCID: PMC11200671 DOI: 10.3390/antibiotics13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli is an indicator micro-organism in One Health antibiotic resistance surveillance programs. The purpose of the study was to describe and compare E. coli isolates obtained from pigs and human contacts from a commercial farm in South Africa using conventional methods and whole-genome sequencing (WGS). Porcine E. coli isolates were proportionally more resistant phenotypically and harbored a richer diversity of antibiotic resistance genes as compared to human E. coli isolates. Different pathovars, namely ExPEC (12.43%, 21/169), ETEC (4.14%, 7/169), EPEC (2.96%, 5/169), EAEC (2.96%, 5/169) and STEC (1.18%, 2/169), were detected at low frequencies. Sequence type complex (STc) 10 was the most prevalent (85.51%, 59/169) among human and porcine isolates. Six STcs (STc10, STc86, STc168, STc206, STc278 and STc469) were shared at the human-livestock interface according to multilocus sequence typing (MLST). Core-genome MLST and hierarchical clustering (HC) showed that human and porcine isolates were overall genetically diverse, but some clustering at HC2-HC200 was observed. In conclusion, even though the isolates shared a spatiotemporal relationship, there were still differences in the virulence potential, antibiotic resistance profiles and cgMLST and HC according to the source of isolation.
Collapse
Affiliation(s)
- Wilhelmina Strasheim
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Michelle Lowe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa;
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Eric M. C. Etter
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), 97170 Petit-Bourg, France
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France
| | - Olga Perovic
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
6
|
Cho J, Song H, Yoon HC, Yoon H. Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes. J Microbiol Biotechnol 2024; 34:340-348. [PMID: 37986605 PMCID: PMC10940738 DOI: 10.4014/jmb.2308.08006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.
Collapse
Affiliation(s)
- Jeongik Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Heymin Song
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun C. Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Leão C, Silveira L, Usié A, Gião J, Clemente L, Themudo P, Amaro A, Pista A. Genetic Diversity of Salmonella enterica subsp. enterica Serovar Enteritidis from Human and Non-Human Sources in Portugal. Pathogens 2024; 13:112. [PMID: 38392849 PMCID: PMC10892295 DOI: 10.3390/pathogens13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the leading causes of foodborne infections associated with broilers and laying hens. Portugal has had the lowest notification rates of salmonellosis in recent years, due to the vaccinations of layer and breeder flocks and strict compliance with biosecurity measures. However, data about the genetic diversity of S. Enteritidis in Portugal are scarce. In this study, 102 S. Enteritidis isolates selected from human (n = 63) and non-human sources (n = 39) were characterized by serotyping, antimicrobial susceptibility, and whole genome sequencing. The S. Enteritidis population was mainly resistant to fluoroquinolones, and a sole isolate showed resistance to extended-spectrum cephalosporins. ST11 was the most frequent sequence type, and three novel STs from human isolates (ST9236, ST4457, and ST9995) were assigned. Several Salmonella pathogenic islands (SPI) and Putative SPI were present in the genomes, namely SPI-1, 2, 3, 4, 5, 9, 10, 12, 13, and 14, C63PI, CS54_island, and 170 virulence genes were identified. The phylogenetic analysis revealed that strains from Portugal are genetically heterogeneous regarding sample type, collection date, and genetic content. This study increases the available data, essential to a better characterization of strains in a global context.
Collapse
Affiliation(s)
- Célia Leão
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Ana Usié
- Department of Animal Genomics and Bioinformatics, Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento & CHANGE–Global Change and Sustainability Institute, CEBAL, 7801-908 Beja, Portugal
| | - Joana Gião
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, 1300-477 Lisbon, Portugal
| | - Patricia Themudo
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
| |
Collapse
|
8
|
Bartsch LJ, Borowiak M, Deneke C, Gruetzke J, Hammerl JA, Malorny B, Szabo I, Alter T, Nguyen KK, Fischer J. Genetic characterization of a multidrug-resistant Salmonella enterica serovar Agona isolated from a dietary supplement in Germany. Front Microbiol 2023; 14:1284929. [PMID: 38033583 PMCID: PMC10686068 DOI: 10.3389/fmicb.2023.1284929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Agona has a history of causing food-borne outbreaks and any emergence of multidrug-resistant (MDR) isolates in novel food products is of concern. Particularly, in food products frequently consumed without sufficient heating prior to consumption. Here, we report about the MDR isolate, 18-SA00377, which had been isolated from a dietary supplement in Germany in 2018 and submitted to the German National Reference Laboratory for Salmonella. WGS-based comparative genetic analyses were conducted to find a potential reservoir of the isolate itself or mobile genetic elements associated with MDR. As a phylogenetic analysis did not yield any closely related S. Agona isolates, either globally or from Germany, a detailed analysis of the largest plasmid (295,499 bp) was performed as it is the main carrier of resistances. A combined approach of long-read and short-read sequencing enabled the assembly of the isolate's chromosome and its four plasmids. Their characterization revealed the presence of 23 different antibiotic resistance genes (ARGs), conferring resistance to 12 different antibiotic drug classes, as well as genes conferring resistance to six different heavy metals. The largest plasmid, pSE18-SA00377-1, belongs to the IncHI2 plasmid family and carries 16 ARGs, that are organized as two distinct clusters, with each ARG associated with putative composite transposons. Through a two-pronged approach, highly similar plasmids to pSE18-SA00377-1 were identified in the NCBI database and a search for Salmonella isolates with a highly similar ARG resistance profile was conducted. Mapping and structural comparisons between pSE18-SA00377-1 and these plasmids and Salmonella isolates showed that both the plasmid backbone and identical or similar ARG clusters can be found not only in Salmonella isolates, originating mostly from a wide variety of livestock, but also in a diverse range of bacterial genera of varying geographical origins and isolation sources. Thus, it can be speculated that the host range of pSE18-SA00377-1 is not restricted to Salmonella and its spread already occurred in different bacterial populations. Overall, this hints at a complex history for pSE18-SA00377-1 and highlights the importance of surveilling multidrug-resistant S. enterica isolates, especially in novel food items that are not yet heavily regulated.
Collapse
Affiliation(s)
- Lee Julia Bartsch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maria Borowiak
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Josephine Gruetzke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens-Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Jennie Fischer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
9
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
10
|
Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8899596. [PMID: 37727836 PMCID: PMC10506869 DOI: 10.1155/2023/8899596] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella is a foodborne zoonotic pathogen causing diarrhoeal disease to humans after consuming contaminated water, animal, and plant products. The bacterium is the third leading cause of human death among diarrhoeal diseases worldwide. Therefore, human salmonellosis is of public health concern demanding integrated interventions against the causative agent, Salmonella enterica. The prevention of salmonellosis in humans is intricate due to several factors, including an immune-stable individual infected with S. enterica continuing to shed live bacteria without showing any clinical signs. Similarly, the asymptomatic Salmonella animals are the source of salmonellosis in humans after consuming contaminated food products. Furthermore, the contaminated products of plant and animal origin are a menace in food industries due to Salmonella biofilms, which enhance colonization, persistence, and survival of bacteria on equipment. The contaminated food products resulting from bacteria on equipment offset the economic competition of food industries and partner institutions in international business. The most worldwide prevalent broad-range Salmonella serovars affecting humans are Salmonella Typhimurium and Salmonella Enteritidis, and poultry products, among others, are the primary source of infection. The broader range of Salmonella serovars creates concern over multiple strategies for preventing and controlling Salmonella contamination in foods to enhance food safety for humans. Among the strategies for preventing and controlling Salmonella spread in animal and plant products include biosecurity measures, isolation and quarantine, epidemiological surveillance, farming systems, herbs and spices, and vaccination. Other measures are the application of phages, probiotics, prebiotics, and nanoparticles reduced and capped with antimicrobial agents. Therefore, Salmonella-free products, such as beef, pork, poultry meat, eggs, milk, and plant foods, such as vegetables and fruits, will prevent humans from Salmonella infection. This review explains Salmonella infection in humans caused by consuming contaminated foods and the interventions against Salmonella contamination in foods to enhance food safety and quality for humans.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| |
Collapse
|
11
|
Gorski L, Noriega AA. Comparison of Phenotype Nutritional Profiles and Phosphate Metabolism Genes in Four Serovars of Salmonella enterica from Water Sources. Microorganisms 2023; 11:2109. [PMID: 37630669 PMCID: PMC10459026 DOI: 10.3390/microorganisms11082109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The surveillance of foods for Salmonella is hindered by bias in common enrichment media where serovars implicated in human illness are outgrown by less virulent serovars. We examined four Salmonella serovars, two common in human illness (Enteritidis and Typhimurium) and two that often dominate enrichments (Give and Kentucky), for factors that might influence culture bias. The four serovars had similar growth kinetics in Tryptic Soy Broth and Buffered Peptone Water. Phenotype microarray analysis with 950 chemical substrates to assess nutrient utilization and stress resistance revealed phenotype differences between serovars. Strains of S. Enteritidis had better utilization of plant-derived sugars such as xylose, mannitol, rhamnose, and fructose, while S. Typhimurium strains were able to metabolize tagatose. Strains of S. Kentucky used more compounds as phosphorus sources and grew better with inorganic phosphate as the sole phosphorus source. The sequences of nine genes involved in phosphate metabolism were compared, and there were differences between serovars in the catalytic ATP-binding domain of the histidine kinase phoR. Analysis of the predicted PhoR amino acid sequences from additional Salmonella genomes indicated a conservation of sequences each within the Typhimurium, Give, and Enteritidis serovars. However, three different PhoR versions were observed in S. Kentucky.
Collapse
Affiliation(s)
- Lisa Gorski
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| | | |
Collapse
|
12
|
Bloomfield SJ, Janecko N, Palau R, Alikhan NF, Mather AE. Genomic diversity and epidemiological significance of non-typhoidal Salmonella found in retail food collected in Norfolk, UK. Microb Genom 2023; 9:mgen001075. [PMID: 37523225 PMCID: PMC10438825 DOI: 10.1099/mgen.0.001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial gastroenteritis. Although many countries have implemented whole genome sequencing (WGS) of NTS, there is limited knowledge on NTS diversity on food and its contribution to human disease. In this study, the aim was to characterise the NTS genomes from retail foods in a particular region of the UK and assess the contribution to human NTS infections. Raw food samples were collected at retail in a repeated cross-sectional design in Norfolk, UK, including chicken (n=311), leafy green (n=311), pork (n=311), prawn (n=279) and salmon (n=157) samples. Up to eight presumptive NTS isolates per positive sample underwent WGS and were compared to publicly available NTS genomes from UK human cases. NTS was isolated from chicken (9.6 %), prawn (2.9 %) and pork (1.3 %) samples and included 14 serovars, of which Salmonella Infantis and Salmonella Enteritidis were the most common. The S. Enteritidis isolates were only isolated from imported chicken. No antimicrobial resistance determinants were found in prawn isolates, whilst 5.1 % of chicken and 0.64 % of pork samples contained multi-drug resistant NTS. The maximum number of pairwise core non-recombinant single nucleotide polymorphisms (SNPs) amongst isolates from the same sample was used to measure diversity and most samples had a median of two SNPs (range: 0-251). NTS isolates that were within five SNPs to clinical UK isolates belonged to specific serovars: S. Enteritidis and S. Infantis (chicken), and S. I 4,[5],12:i- (pork and chicken). Most NTS isolates that were closely related to human-derived isolates were obtained from imported chicken, but further epidemiological data are required to assess definitively the probable source of the human cases. Continued WGS surveillance of Salmonella on retail food involving multiple isolates from each sample is necessary to capture the diversity of Salmonella and determine the relative importance of different sources of human disease.
Collapse
Affiliation(s)
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raphaёlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
Treffon J, Prior K, Dreesman J, Egelkamp R, Flieger A, Middendorf-Bauchart B, Projahn M, Richter A, Schuh E, Harmsen D, Mellmann A. Multicenter Preparedness Exercise Enables Rapid Development of Cluster-Specific PCR-Based Screening Assays from Bacterial Genomic Data. J Clin Microbiol 2023; 61:e0187322. [PMID: 36840589 PMCID: PMC10035311 DOI: 10.1128/jcm.01873-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
PCR-based screening assays targeting strain-specific genetic markers allow the timely detection and specific differentiation of bacterial strains. Especially in situations where an infection cluster occurs, fast assay development is crucial for supporting targeted control measures. However, the turnaround times (TATs) for assay setup may be high due to insufficient knowledge about screening assay methods, workflows, and software tools. Here, two blind-coded and quality-controlled ring trials were performed in which five German laboratories established PCR-based screening assays from genomic data that specifically target selected bacterial clusters within two bacterial monospecies sample panels. While the first ring trial was conducted without a time limit to train the participants and assess assay feasibility, in the second ring trial, a challenging time limit of 2 weeks was set to force fast assay development as soon as genomic data were available. During both ring trials, we detected high interlaboratory variability regarding the screening assay methods and targets, the TATs for assay setup, and the number of screening assays. The participants designed between one and four assays per cluster that targeted cluster-specific unique genetic sequences, genes, or single nucleotide variants using conventional PCRs, high-resolution melting assays, or TaqMan PCRs. Assays were established within the 2-week time limit, with TATs ranging from 4 to 13 days. TaqMan probe delivery times strongly influenced TATs. In summary, we demonstrate that a specific exercise improved the preparedness to develop functional cluster-specific PCR-based screening assays from bacterial genomic data. Furthermore, the parallel development of several assays enhances assay availability.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome, University Hospital Münster, Münster, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | - Johannes Dreesman
- Department of Microbiology, Infection Protection, Hospital Hygiene, and Infection Epidemiology, Public Health Agency of Lower Saxony, Hannover, Germany
| | - Richard Egelkamp
- Department of Microbiology, Infection Protection, Hospital Hygiene, and Infection Epidemiology, Public Health Agency of Lower Saxony, Hannover, Germany
| | - Antje Flieger
- Department of Enteropathogenic Bacteria and Legionella, National Reference Center for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Barbara Middendorf-Bauchart
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome, University Hospital Münster, Münster, Germany
| | - Michaela Projahn
- Department of Biological Safety, National Reference Laboratory for Escherichia coli Including VTEC, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anne Richter
- Department of Enteropathogenic Bacteria and Legionella, National Reference Center for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Elisabeth Schuh
- Department of Biological Safety, National Reference Laboratory for Escherichia coli Including VTEC, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome, University Hospital Münster, Münster, Germany
| |
Collapse
|
14
|
[Assessment of available and currently applied typing methods including genome-based methods for zoonotic pathogens with a focus on Salmonella enterica]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:75-83. [PMID: 36547697 PMCID: PMC9773680 DOI: 10.1007/s00103-022-03622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND In recent years, whole genome sequencing (WGS) in combination with bioinformatic analyses has become state of the art in evaluating the pathogenicity/resistance potential and relatedness of bacteria. WGS analysis thus represents a central tool in the investigation of the resistance and virulence potential of pathogens, as well as their dissemination via outbreak clusters and transmission chains within the framework of molecular epidemiology. In order to gain an overview of the available genotypic and phenotypic methods used for pathogen typing of Salmonella and Shiga toxin-producing and enterohemorrhagic Escherichia coli (STEC/EHEC) in Germany at state and federal level, along with the availability of WGS-based typing and corresponding analytical methods, a survey of laboratories was conducted. METHODS An electronic survey of laboratories working for public health protection and consumer health protection was conducted from February to June 2020. RESULTS AND CONCLUSION The results of the survey showed that many of the participating laboratories provide a wide range of phenotypic and molecular methods. Molecular typing is most commonly used for species identification of Salmonella. In many cases, WGS-based methods have already been established at federal and state institutions or are in the process of being established. The Illumina sequencing technology is the most widely used technology. The survey confirms the importance of molecular biology and whole genome typing technologies for laboratories in the diagnosis of bacterial zoonotic pathogens.
Collapse
|
15
|
Genome-Wide Searching Single Nucleotide-Polymorphisms (SNPs) and SNPs-Targeting a Multiplex Primer for Identification of Common Salmonella Serotypes. Pathogens 2022; 11:pathogens11101075. [PMID: 36297133 PMCID: PMC9611365 DOI: 10.3390/pathogens11101075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
A rapid and high-quality single-nucleotide polymorphisms (SNPs)-based method was developed to improve detection and reduce salmonellosis burden. In this study, whole-genome sequence (WGS) was used to investigate SNPs, the most common genetic marker for identifying bacteria. SNP-sites encompassing 15 sets of primers (666–863 bp) were selected and used to amplify the target Salmonella serovar strains, and the amplified products were sequenced. The prevalent Salmonella enterica subspecies enterica serovars, including Typhimurium; Enteritidis, Agona, enterica, Typhi, and Abony, were amplified and sequenced. The amplified sequences of six Salmonella serovars with 15 sets of SNP-sites encompassing primers were aligned, explored SNPs, and SNPs-carrying primers (23 sets) were designed to develop a multiplex PCR marker (m-PCR). Each primer exists in at least two SNPs bases at the 3′ end of each primer, such as one was wild, and another was a mismatched base by transition or transversion mutation. Thus, twenty-three sets of SNP primers (242–670 bp), including 13 genes (SBG, dedA, yacG, mrcB, mesJ, metN, rihA/B, modA, hutG, yehX, ybiY, moeB, and sopA), were developed for PCR confirmation of target Salmonella serovar strains. Finally, the SNPs in four genes, including fliA gene (S. Enteritidis), modA (S. Agona and S. enterica), sopA (S. Abony), and mrcB (S. Typhimurium and S. Typhi), were used for detection markers of six target Salmonella serotypes. We developed an m-PCR primer set in which Salmonella serovars were detected in a single reaction. Nevertheless, m-PCR was validated with 21 Salmonella isolates (at least one isolate was taken from one positive animal fecal, and n = 6 reference Salmonella strains) and non-Salmonella bacteria isolates. The SNP-based m-PCR method would identify prevalent Salmonella serotypes, minimize the infection, and control outbreaks.
Collapse
|
16
|
Klose C, Scuda N, Ziegler T, Eisenberger D, Hanczaruk M, Riehm JM. Whole-Genome Investigation of Salmonella Dublin Considering Mountain Pastures as Reservoirs in Southern Bavaria, Germany. Microorganisms 2022; 10:885. [PMID: 35630330 PMCID: PMC9146225 DOI: 10.3390/microorganisms10050885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Worldwide, Salmonella Dublin (S. Dublin) is responsible for clinical disease in cattle and also in humans. In Southern Bavaria, Germany, the serovar was identified as a causative agent for 54 animal disease outbreaks in herds between 2017 and 2021. Most of these emerged from cattle herds (n = 50). Two occurred in pig farms and two in bovine herds other than cattle. Genomic analysis of 88 S. Dublin strains isolated during these animal disease outbreaks revealed 7 clusters with 3 different MLST-based sequence types and 16 subordinate cgMLST-based complex types. Antimicrobial susceptibility investigation revealed one resistant and three intermediate strains. Furthermore, only a few genes coding for bacterial virulence were found among the isolates. Genome analysis enables pathogen identification and antimicrobial susceptibility, serotyping, phylogeny, and follow-up traceback analysis. Mountain pastures turned out to be the most likely locations for transmission between cattle of different herd origins, as indicated by epidemiological data and genomic traceback analyses. In this context, S. Dublin shedding was also detected in asymptomatic herding dogs. Due to the high prevalence of S. Dublin in Upper Bavaria over the years, we suggest referring to this administrative region as "endemic". Consequently, cattle should be screened for salmonellosis before and after mountain pasturing.
Collapse
Affiliation(s)
- Corinna Klose
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - Tobias Ziegler
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - David Eisenberger
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany; (C.K.); (N.S.); (T.Z.); (D.E.)
| | - Matthias Hanczaruk
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleißheim, Germany;
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleißheim, Germany;
| |
Collapse
|
17
|
Sarno E, Pezzutto D, Rossi M, Liebana E, Rizzi V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J Food Prot 2021; 84:2059-2070. [PMID: 34197583 DOI: 10.4315/jfp-21-096] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Foodborne diseases remain a global public health challenge worldwide. The European surveillance system of multistate foodborne outbreaks integrates elements from public and animal health and the food chain for early detection, assessment, and control. This review includes descriptions of the significant outbreaks that occurred in Europe in the last decade. Their significance and relevance to public health is derived from the changes, improvements, and novelties that pushed toward building a safer food system in the European Union, certainly driven by the One Health approach. In 2011, a point source monoclonal outbreak of infections caused by Escherichia coli serotype O104:H4 in sprouted seeds resulted in hundreds of cases of hemolytic uremic syndrome and several fatalities. In 2015, a prolonged outbreak of Listeria monocytogenes infections caused by contamination of frozen corn in Europe resulted in 47 cases and nine deaths. In 2016, a persistent polyclonal outbreak of Salmonella Enteritidis was linked to the consumption of eggs and was associated with hundreds of cases. The outbreak evaluations highlight the importance of rapid sharing of data (e.g., sequencing and tracing data) and the need for harmonizing bioinformatics outputs and computational approaches to facilitate detection and investigation of foodborne illnesses. These outbreaks led to development of a legal framework for a European collaboration platform for sharing whole genome sequence data and enabled the enforcement of existing hygiene and food safety provisions and the development of new hygiene guidelines and best practices. This review also briefly touches on the new trends in information technologies that are being explored for food traceability and safety. These technologies could enhance the traceability of food throughout the supply chain and redirect the conventional tracing system toward a digitized supply chain. HIGHLIGHTS
Collapse
Affiliation(s)
- Eleonora Sarno
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Denise Pezzutto
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Mirko Rossi
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Ernesto Liebana
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Valentina Rizzi
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
18
|
Uelze L, Bloch A, Borowiak M, Grobbel M, Deneke C, Fischer M, Malorny B, Pietsch M, Simon S, Szabó I, Tausch SH, Fischer J. What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany. Microorganisms 2021; 9:1911. [PMID: 34576806 PMCID: PMC8471515 DOI: 10.3390/microorganisms9091911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to gain an overview of the genetic diversity of Salmonella found in wildlife in Germany. We were particularly interested in exploring whether wildlife acts as a reservoir of certain serovars/subtypes or antimicrobial resistance (AMR) genes. Moreover, we wanted to explore the potential of Salmonella in spreading from wildlife to livestock and humans. To answer these questions, we sequenced 260 Salmonella enterica subsp. enterica isolates sampled between 2002 and 2020 from wildlife across Germany, using short-read whole genome sequencing. We found, consistent with previous findings, that some Salmonella sequence types are associated with certain animal species, such as S. Choleraesuis ST145 with wild boar and S. Enteritidis ST183 with hedgehogs. Antibiotic resistance was detected in 14.2% of all isolates, with resistance against important WATCH group antibiotics present in a small number of isolates. We further found that wildlife isolates do not form separate phylogenetic clusters distant to isolates from domestic animals and foodstuff, thus indicating frequent transmission events between these reservoirs. Overall, our study shows that Salmonella in German wildlife are diverse, with a low AMR burden and close links to Salmonella populations of farm and food-production environments.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Angelina Bloch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Matthias Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Michael Pietsch
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany; (M.P.); (S.S.)
| | - Sandra Simon
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany; (M.P.); (S.S.)
| | - István Szabó
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| |
Collapse
|
19
|
Deneke C, Uelze L, Brendebach H, Tausch SH, Malorny B. Decentralized Investigation of Bacterial Outbreaks Based on Hashed cgMLST. Front Microbiol 2021; 12:649517. [PMID: 34220740 PMCID: PMC8244591 DOI: 10.3389/fmicb.2021.649517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Whole-genome sequencing (WGS)-based outbreak investigation has proven to be a valuable method for the surveillance of bacterial pathogens. Its utility has been successfully demonstrated using both gene-by-gene (cgMLST or wgMLST) and single-nucleotide polymorphism (SNP)-based approaches. Among the obstacles of implementing a WGS-based routine surveillance is the need for an exchange of large volumes of sequencing data, as well as a widespread reluctance to share sequence and metadata in public repositories, together with a lacking standardization of suitable bioinformatic tools and workflows. To address these issues, we present chewieSnake, an intuitive and simple-to-use cgMLST workflow. ChewieSnake builds on the allele calling software chewBBACA and extends it by the concept of allele hashing. The resulting hashed allele profiles can be readily compared between laboratories without the need of a central allele nomenclature. The workflow fully automates the computation of the allele distance matrix, cluster membership, and phylogeny and summarizes all important findings in an interactive HTML report. Furthermore, chewieSnake can join allele profiles generated at different laboratories and identify shared clusters, including a stable and intercommunicable cluster nomenclature, thus facilitating a joint outbreak investigation. We demonstrate the feasibility of the proposed approach with a thorough method comparison using publically available sequencing data for Salmonella enterica. However, chewieSnake is readily applicable to all bacterial taxa, provided that a suitable cgMLST scheme is available. The workflow is freely available as an open-source tool and can be easily installed via conda or docker.
Collapse
Affiliation(s)
- Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Laura Uelze
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Holger Brendebach
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Simon H Tausch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|