1
|
Singh A, T V A, Singh S, Saxena AK, Nain L. Application of fungal inoculants enhances colonization of secondary bacterial degraders during in situ paddy straw degradation: a genomic insights into cross-domain synergism. Int Microbiol 2025; 28:703-720. [PMID: 39138687 DOI: 10.1007/s10123-024-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Rice cultivation generates huge amounts of on farm residues especially under mechanical harvesting. Paddy straw being recalcitrant hinders sowing of upcoming rabi crops like wheat and mustard. Non-environmental sustainable practice of on-farm burning of the paddy residues is being popularly followed for quick disposal of the agro-residues and land preparation. However, conservation agriculture involving in situ residue incorporation can be a sustainable option to utilize the residues for improvement of soil biological health. However, low temperature coupled with poor nitrogen status of soil reduces the decomposition rate of residues that may lead to nitrogen immobilization and hindrance in land preparation. In this direction, ecological impact of two approaches viz priming with urea and copiotrophic fungus-based bioformulation (CFB) consisting of Coprinopsis cinerea LA2 and Cyathus stercoreus ITCC3745 was studied for in situ degradation of residues. Succession of bacterial diversity was deciphered through high throughput whole metagenomic sequencing along with studies on dynamics of soil microbial enzymes. Treatments receiving CFB (T1) and urea (T2) when compared with bulk soil (absolute control) showed an increase in richness of the microbial diversity as compared to control straw retained treatment control (T3). The β diversity indices also indicated sufficient group variations among the treatments receiving CFB and urea as compared to only straw retained treatment and bulk soil. Priming of paddy straw with CFB and urea also induced significant rewiring of the bacterial co-occurrence networks. Quantification of soil ligno-cellulolytic activity as well as abundance of carbohydrate active enzymes (CAZy) genes indicated high activities of hydrolytic enzymes in CFB primed straw retention treatment as compared to urea primed straw retention treatment. The genomic insights on effectiveness of copiotrophic fungus bioformulation for in situ degradation of paddy straw will further help in developing strategies for management of crop residues in eco-friendly manner.
Collapse
Affiliation(s)
- Arjun Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
- ICAR-Central Soil Salinity Research Institute, RRS Lucknow, Lucknow, UP, India
| | - Abiraami T V
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Song W, Geng S, Qi Q, Lu X. Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii. Microorganisms 2025; 13:395. [PMID: 40005761 PMCID: PMC11858162 DOI: 10.3390/microorganisms13020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Cytophaga hutchinsonii, a member of the phylum Bacteroidetes, can rapidly degrade crystalline cellulose through direct cell-to-substrate contact. Most of its cellulases are secreted by the Type IX secretion system (T9SS) and anchored to the cell surface. Our previous study proved that the C-terminal domain (CTD) of the T9SS substrate cellulase Cel9A is glycosylated in C. hutchinsonii. However, its glycosylation mechanism has remained elusive. In this study, we found that chu_3394, which encodes UDP-glucose 6-dehydrogenase (Ugd), was important for the glycosylation of large amounts of periplasmic and outer membrane proteins in C. hutchinsonii. The contents of mannose, glucose, galactose, and xylose were detected to be reduced in the glycoproteins of the ∆ugd mutant compared to that of wild-type. They might be essential monosaccharides that contribute to the structure and function of glycans attached to proteins in C. hutchinsonii. The depletion of mannose, glucose, galactose, and xylose indicates a decrease in glycosylation modifications in the ∆ugd mutant strain. Then, we found that the deletion of ugd resulted in weakened glycosylation modification of the recombinant green fluorescent protein-tagged CTD of Cel9A. Additionally, the outer-membrane localization of Cel9A was affected in the mutant. Besides this, Ugd was also important for the synthesis of O-antigen of lipopolysaccharide (LPS). Thus, Ugd was involved in the synthesis of glycans in both glycoproteins and LPS in C. hutchinsonii. Moreover, the deletion of ugd affected the cellulose degradation, cell motility, and stress resistance of C. hutchinsonii.
Collapse
Affiliation(s)
| | | | | | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (W.S.); (S.G.); (Q.Q.)
| |
Collapse
|
3
|
Estevan-Morió E, Ramírez-Larrota JS, Bushi E, Eckhard U. Dissecting Cytophagalysin: Structural and Biochemical Studies of a Bacterial Pappalysin-Family Metallopeptidase. Biomolecules 2024; 14:1604. [PMID: 39766312 PMCID: PMC11674741 DOI: 10.3390/biom14121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic Flavobacterium spp. that cause severe diseases in fish. Cytophaga strain L43-1 secretes cytophagalysin (CPL1), a 137 kDa peptidase with reported collagenolytic and gelatinolytic activity. We performed highly-confident structure prediction calculations for CPL1, which identified 11 segments and domains, including a signal peptide for secretion, a prosegment (PS) for latency, a metallopeptidase (MP)-like catalytic domain (CD), and eight immunoglobulin (Ig)-like domains (D3-D10). In addition, two short linkers were found at the D8-D9 and D9-D10 junctions, and the structure would be crosslinked by four disulfide bonds. The CPL1 CD was found closest to ulilysin from Methanosarcina acetivorans, which assigns CPL1 to the lower-pappalysin family within the metzincin clan of MPs. Based on the structure predictions, we aimed to produce constructs spanning the full-length enzyme, as well as PS+CD, PS+CD+D3, and PS+CD+D3+D4. However, we were successful only with the latter three constructs. We could activate recombinant CPL1 by PS removal employing trypsin, and found that both zymogen and mature CPL1 were active in gelatin zymography and against a fluorogenic gelatin variant. This activity was ablated in a mutant, in which the catalytic glutamate described for lower pappalyins and other metzincins was replaced by alanine, and by a broad-spectrum metal chelator. Overall, these results proved that our recombinant CPL1 is a functional active MP, thus supporting the conclusions derived from the structure predictions.
Collapse
Affiliation(s)
- Eva Estevan-Morió
- Synthetic Structural Biology Group, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
- Doctorate in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Juan Sebastián Ramírez-Larrota
- Synthetic Structural Biology Group, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
- Doctorate in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Enkela Bushi
- Synthetic Structural Biology Group, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| |
Collapse
|
4
|
Quadir N, Shariq M, Sheikh JA, Singh J, Sharma N, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis protein MoxR1 enhances virulence by inhibiting host cell death pathways and disrupting cellular bioenergetics. Virulence 2023; 14:2180230. [PMID: 36799069 PMCID: PMC9980616 DOI: 10.1080/21505594.2023.2180230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) utilizes the multifunctionality of its protein factors to deceive the host. The unabated global incidence and prevalence of tuberculosis (TB) and the emergence of multidrug-resistant strains warrant the discovery of novel drug targets that can be exploited to manage TB. This study reports the role of M. tb AAA+ family protein MoxR1 in regulating host-pathogen interaction and immune system functions. We report that MoxR1 binds to TLR4 in macrophage cells and further reveal how this signal the release of proinflammatory cytokines. We show that MoxR1 activates the PI3K-AKT-MTOR signalling cascade by inhibiting the autophagy-regulating kinase ULK1 by potentiating its phosphorylation at serine 757, leading to its suppression. Using autophagy-activating and repressing agents such as rapamycin and bafilomycin A1 suggested that MoxR1 inhibits autophagy flux by inhibiting autophagy initiation. MoxR1 also inhibits apoptosis by suppressing the expression of MAPK JNK1/2 and cFOS, which play critical roles in apoptosis induction. Intriguingly, MoxR1 also induced robust disruption of cellular bioenergetics by metabolic reprogramming to rewire the citric acid cycle intermediates, as evidenced by the lower levels of citric acid and electron transport chain enzymes (ETC) to dampen host defence. These results point to a multifunctional role of M. tb MoxR1 in dampening host defences by inhibiting autophagy, apoptosis, and inducing metabolic reprogramming. These mechanistic insights can be utilized to devise strategies to combat TB and better understand survival tactics by intracellular pathogens.
Collapse
Affiliation(s)
- Neha Quadir
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India,Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Mohd. Shariq
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India
| | | | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Neha Sharma
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India,Department of Life Science,School of Basic Science and Research, Sharda University, Greater Noida, India,CONTACT Seyed Ehtesham Hasnain
| | - Nasreen Zafar Ehtesham
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India,Nazreen Zafar Ehtesham
| |
Collapse
|
5
|
Glycosyltransferase-Related Protein GtrA Is Essential for Localization of Type IX Secretion System Cargo Protein Cellulase Cel9A and Affects Cellulose Degradation in Cytophaga hutchinsonii. Appl Environ Microbiol 2022; 88:e0107622. [PMID: 36197104 PMCID: PMC9599414 DOI: 10.1128/aem.01076-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Cytophaga hutchinsonii digests cellulose through a novel cellulose degradation mechanism. It possesses the lately characterized type IX secretion system (T9SS). We recently discovered that N-glycosylation of the C-terminal domain (CTD) of a hypothetical T9SS substrate protein in the periplasmic space of C. hutchinsonii affects protein secretion and localization. In this study, green fluorescent protein (GFP)-CTDCel9A recombinant protein was found with increased molecular weight in the periplasm of C. hutchinsonii. Site-directed mutagenesis studies on the CTD of cellulase Cel9A demonstrated that asparagine residue 900 in the D-X-N-X-S motif is important for the processing of the recombinant protein. We found that the glycosyltransferase-related protein GtrA (CHU_0012) located in the cytoplasm of C. hutchinsonii is essential for outer membrane localization of the recombinant protein. The deletion of gtrA decreased the abundance of the outer membrane proteins and affected cellulose degradation by C. hutchinsonii. This study provided a link between the glycosylation system and cellulose degradation in C. hutchinsonii. IMPORTANCE N-Glycosylation systems are generally limited to some pathogenic bacteria in prokaryotes. The disruption of the N-glycosylation pathway is related to adherence, invasion, colonization, and other phenotypic characteristics. We recently found that the cellulolytic bacterium Cytophaga hutchinsonii also has an N-glycosylation system. The cellulose degradation mechanism of C. hutchinsonii is novel and mysterious; cellulases and other proteins on the cell surface are involved in utilizing cellulose. In this study, we identified an asparagine residue in the C-terminal domain of cellulase Cel9A that is necessary for the processing of the T9SS cargo protein. Moreover, the glycosyltransferase-related protein GtrA is essential for the localization of the GFP-CTDCel9A recombinant protein. Deletion of gtrA affected cellulose degradation and the abundance of outer membrane proteins. This study enriched the understanding of the N-glycosylation system in C. hutchinsonii and provided a link between N-glycosylation and cellulose degradation, which also expanded the role of the N-glycosylation system in bacteria.
Collapse
|
6
|
Song W, Zhuang X, Tan Y, Qi Q, Lu X. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. ENGINEERING MICROBIOLOGY 2022; 2:100038. [PMID: 39629027 PMCID: PMC11611037 DOI: 10.1016/j.engmic.2022.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/06/2024]
Abstract
The recently discovered type IX secretion system (T9SS) is limited to the Bacteroidetes phylum. Cytophaga hutchinsonii, a member of the Bacteroidetes phylum widely spread in soil, has complete orthologs of T9SS components and many T9SS substrates. C. hutchinsonii can efficiently degrade crystalline cellulose using a novel strategy, in which bacterial cells must be in direct contact with cellulose. It can rapidly glide over surfaces via unclear mechanisms. Studies have shown that T9SS plays an important role in cellulose degradation, gliding motility, and ion assimilation in C. hutchinsonii. As reported recently, T9SS substrates are N- or O-glycosylated at their C-terminal domains (CTDs), with N-glycosylation being related to the translocation and outer membrane anchoring of these proteins. These findings have deepened our understanding of T9SS in C. hutchinsonii. In this review, we focused on the research progress on diverse substrates and functions of T9SS in C. hutchinsonii and the glycosylation of its substrates. A model of T9SS functions and the glycosylation of its substrates was proposed.
Collapse
Affiliation(s)
- Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueke Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Tan Y, Song W, Gao L, Zhang W, Lu X. Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation. J Microbiol 2022; 60:364-374. [DOI: 10.1007/s12275-022-1531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
|
8
|
Fan G, Song W, Guan Z, Zhang W, Lu X. Some novel features of strong promoters discovered in Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2022; 106:2529-2540. [PMID: 35318522 DOI: 10.1007/s00253-022-11869-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
Cytophaga hutchinsonii is an important Gram-negative bacterium belonging to the Bacteroides phylum that can efficiently degrade cellulose. But the promoter that mediates the initiation of gene transcription has been unknown for a long time. In this study, we determined the transcription start site (TSS) of C. hutchinsonii by 5' rapid amplification of cDNA ends (5'RACE). The promoter structure was first identified as TAAT and TATTG which are located -5 and -31 bp upstream of TSS, respectively. The function of -5 and -31 regions and the spacer length of the promoter Pchu_1284 were explored by site directed ligase-independent mutagenesis (SLIM). The results showed that the promoter activities were sharply decreased when the TTG motif was mutated into guanine (G) or cytosine (C). Interestingly, we found that the strong promoter was accompanied with many TTTG motifs which could enhance the promoter activities within certain copies. These characteristics were different from other promoters of Bacteriodes species. Furthermore, we carried out genome scanning analysis for C. hutchinsonii and another Bacteroides species by Perl6.0. The results indicated that the promoter structure of C. hutchinsonii possessed more unique features than other species. Also, the screened inducible promoter Pchu_2268 was used to overexpress protein CHU_2196 with a molecular weight of 120 kDa in C. hutchinsonii. The present study enriched the promoter structure of Bacteroidetes species and also provided a novel method for the highly expressed large protein (cellulase) in vivo, which was helpful to elucidate the unique cellulose degradation mechanism of C. hutchinsonii.Key points• The conserved structure of strong promoter of C. hutchinsonii was elucidated.• Two novel regulation motifs of TTTG and AATTATG in the promoter were discovered.• A new method for induced expression of cellulase in vivo was established.• Helpful for explained the unique cellulose degradation mechanism of C. hutchinsonii.
Collapse
Affiliation(s)
- Guoqing Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Zhiwei Guan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.,School of Life Science, Qilu Normal University, Jinan, 250200, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.
| |
Collapse
|
9
|
Zhao D, Song W, Wang S, Zhang W, Zhao Y, Lu X. Identification of the Type IX Secretion System Component, PorV (CHU_3238), Involved in Secretion and Localization of Proteins in Cytophaga hutchinsonii. Front Microbiol 2021; 12:742673. [PMID: 34745042 PMCID: PMC8564354 DOI: 10.3389/fmicb.2021.742673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Cytophaga hutchinsonii can efficiently degrade cellulose and rapidly glide over surfaces, but the underlying mechanisms remain unclear. The type IX secretion system (T9SS) is involved in protein secretion and gliding motility, which is unique to the phylum Bacteroidetes. In this study, we deleted a homologous gene of PorV (chu_3238), a shuttle protein in the T9SS. The Δ3238 mutant caused cellulolytic and gliding defects, while the porV deletion mutants in other Bacteroidetes could glide normally. Adding Ca2+ and K+ improved growth in the PY6 medium, suggesting a potential role of chu_3238 in ion uptake. A proteomic analysis showed an increase in the number of extracellular proteins in the Δ3238 mutant and a decrease in the outer membrane proteins compared to the wild type (WT). Endoglucanase activity in the Δ3238 intact cells was reduced by approximately 70% compared to that of the WT. These results indicate that the secreted proteins could not attach to the cell surface but were released into the extracellular space in the Δ3238 mutant. However, the cargo proteins accumulated in the periplasm of other reported porV deletion mutants. In addition, the homologs of the translocon SprA and a Plug protein were pulled down by co-immunoprecipitation in the 3238-FLAG strain, which are involved in protein transport in the T9SS of Flavobacterium johnsoniae. The integrity of the lipopolysaccharide (LPS) was also affected in the Δ3238 mutant, which may be the reason for the sensitivity of the cell to toxic reagents. The functional diversity of CHU_3238 suggests its important role in the T9SS of C. hutchinsonii and highlights the functional differences of PorV in the T9SS among the Bacteroidetes.
Collapse
Affiliation(s)
- Dong Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
A T9SS Substrate Involved in Crystalline Cellulose Degradation by Affecting Crucial Cellulose Binding Proteins in Cytophaga hutchinsonii. Appl Environ Microbiol 2021; 88:e0183721. [PMID: 34731049 DOI: 10.1128/aem.01837-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii is an abundant soil cellulolytic bacterium that uses a unique cellulose degradation mechanism different from those that involve free cellulases or cellulosomes. Though several proteins were identified to be important for cellulose degradation, the mechanism used by C. hutchinsonii to digest crystalline cellulose remains a mystery. In this study, chu_0922 was identified by insertional mutation and gene deletion as an important gene locus indispensable for crystalline cellulose utilization. Deletion of chu_0922 resulted in defect in crystalline cellulose utilization. The Δ0922 mutant completely lost the ability to grow on crystalline cellulose even with extended incubation, and selectively utilized the amorphous region of cellulose leading to the increased crystallinity. As a protein secreted by the type Ⅸ secretion system (T9SS), CHU_0922 was found to be located on the outer membrane, and the outer membrane localization of CHU_0922 relied on the T9SS. Comparative analysis of the outer membrane proteins revealed that the abundance of several cellulose binding proteins, including CHU_1276, CHU_1277, and CHU_1279, was reduced in the Δ0922 mutant. Further study showed that CHU_0922 is crucial for the full expression of the gene cluster containing chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which is essential for cellulose utilization. Moreover, CHU_0922 is required for the cell surface localization of CHU_3220, a cellulose binding protein that is essential for crystalline cellulose utilization. Our study provides insights into the complex system that C. hutchinsonii uses to degrade crystalline cellulose. IMPORTANCE The widespread aerobic cellulolytic bacterium Cytophaga hutchinsonii, belonging to the phylum Bacteroidetes, utilizes a novel mechanism to degrade crystalline cellulose. No genes encoding proteins specialized in loosening or disruption the crystalline structure of cellulose were identified in the genome of C. hutchinsonii, except for chu_3220 and chu_1557. The crystalline cellulose degradation mechanism remains enigmatic. This study identified a new gene locus, chu_0922, encoding a typical T9SS substrate that is essential for crystalline cellulose degradation. Notably, CHU_0922 is crucial for the normal transcription of chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which play important roles in the degradation of cellulose. Moreover, CHU_0922 participates in the cell surface localization of CHU_3220. These results demonstrated that CHU_0922 plays a key role in the crystalline cellulose degradation network. Our study will promote the uncovering of the novel cellulose utilization mechanism of C. hutchinsonii.
Collapse
|
11
|
N-glycosylation of a cargo protein C-terminal domain recognized by the type IX secretion system in Cytophaga hutchinsonii affects protein secretion and localization. Appl Environ Microbiol 2021; 88:e0160621. [PMID: 34644163 DOI: 10.1128/aem.01606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii is a Gram-negative bacterium belonging to the phylum Bacteroidetes. It digests crystalline cellulose with an unknown mechanism, and possesses a type IX secretion system (T9SS) that can recognize the C-terminal domain (CTD) of the cargo protein as a signal. In this study, the functions of CTD in the secretion and localization of T9SS substrates in C. hutchinsonii were studied by fusing the green fluorescent protein (GFP) with CTD from CHU_2708. CTD is necessary for the secretion of GFP by C. hutchinsonii T9SS. The GFP-CTDCHU_2708 fusion protein was found to be glycosylated in the periplasm with a molecular mass about 5 kDa higher than that predicted from its sequence. The glycosylated protein was sensitive to peptide-N-glycosidase F which can hydrolyze N-linked oligosaccharides. Analyses of mutants obtained by site-directed mutagenesis of asparagine residues in the N-X-S/T motif of CTDCHU_2708 suggest that N-glycosylation occurred on the CTD. CTD N-glycosylation is important for the secretion and localization of GFP-CTD recombinant proteins in C. hutchinsonii. Glycosyltransferase encoding gene chu_3842, a homologous gene of Campylobacter jejuni pglA, was found to participate in the N-glycosylation of C. hutchinsonii. Deletion of chu_3842 affected cell motility, cellulose degradation, and cell resistance to some chemicals. Our study provided the evidence that CTD as the signal of T9SS was N-glycosylated in the periplasm of C. hutchinsonii. IMPORTANCE The bacterial N-glycosylation system has previously only been found in several species of Proteobacteria and Campylobacterota, and the role of N-linked glycans in bacteria is still not fully understood. C. hutchinsonii has a unique cell-contact cellulose degradation mechanism, and many cell surface proteins including cellulases are secreted by the T9SS. Here, we found that C. hutchinsonii, a member of the phylum Bacteroidetes, has an N-glycosylation system. Glycosyltransferase CHU_3842 was found to participate in the N-glycosylation of C. hutchinsonii proteins, and had effects on cell resistance to some chemicals, cell motility, and cellulose degradation. Moreover, N-glycosylation occurs on the CTD translocation signal of T9SS. The glycosylation of CTD apears to play an important role in affecting T9SS substrates transportation and localization. This study enriched our understanding of the widespread existence and multiple biological roles of N-glycosylation in bacteria.
Collapse
|