1
|
Wang YN, Cai TG, Li Y, Dai WC, Lin D, Zheng JT, Wang YF, Zhu D. Warming exacerbates the effects of pesticides on the soil collembolan gut microbiome and antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138294. [PMID: 40245716 DOI: 10.1016/j.jhazmat.2025.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
In the context of global climate warming, studies have yet to fully clarify how pollutants affect the gut microbiome and antibiotic resistance genes (ARGs) in nontarget soil fauna. This study investigates the interactive effects of pesticide exposure (imidacloprid) and elevated temperature on the gut bacterial community and ARGs in the model soil collembolan Folsomia candida. Our results demonstrate warming exacerbates the toxicity of imidacloprid in collembolans. While exposure to both warming and pesticide significantly altered the gut microbial composition of F. candida, impairing microbial metabolic diversity and potential host defense mechanisms, it also increased collembolan mortality. This combined exposure significantly enhanced the abundance and diversity of ARGs in the collembolan gut. A notable correlation between ARGs and mobile genetic elements (MGEs) underscores the potential risk of ARG transmission. Co-occurrence network analysis identified 52 bacterial genera as potential ARG hosts. Additionally, pure-culture exposure experiments with the isolated bacterium Serratia liquefaciens revealed the adaptability of ARG hosts to pesticide and warming stress plays an important role in driving the observed increase in ARGs. In conclusion, this study highlights the synergistic effects of climate warming and pesticide contamination on nontarget soil organisms, emphasizing the potential long-term risks to soil ecosystem health and stability.
Collapse
Affiliation(s)
- Ya-Ning Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Gui Cai
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Wen-Cai Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Da Lin
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Ting Zheng
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Fei Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
2
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
3
|
Zalewska M, Błażejewska A, Szadziul M, Ciuchciński K, Popowska M. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30819-30835. [PMID: 38616224 PMCID: PMC11096248 DOI: 10.1007/s11356-024-33276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Szadziul
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Ciuchciński
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Liu Y, Smith W, Gebrewold M, Wang X, Simpson SL, Bivins A, Ahmed W. Comparison of concentration and extraction workflows for qPCR quantification of intI1 and vanA in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166442. [PMID: 37604373 DOI: 10.1016/j.scitotenv.2023.166442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) measurement of antibiotic resistance genes (ARGs) in untreated municipal wastewater may prove useful in combating the antimicrobial resistance crisis. However, harmonizing and optimizing qPCR-based workflows is essential to facilitate comparisons across studies, and includes achieving highly-effective ARG capture through efficient concentration and extraction procedures. In the current study, combinations of sample volume, membrane types and DNA extraction kits within filtration and centrifugation-based workflows were used to quantify 16S ribosomal RNA (16S rRNA), class 1 integron-integrase gene (intI1) and an ARG encoding resistance to vancomycin (vanA) in untreated wastewater sampled from three wastewater treatment plants (WWTPs). Highly abundant 16S rRNA and intI1 were detected in 100 % of samples from all three WWTPs using both 2 and 20 mL sample volumes, while lower prevalence vanA was only detected when using the 20 mL volume. When filtering 2 mL of wastewater, workflows with 0.20-/0.40-μm polycarbonate (PC) membranes generally yielded greater concentrations of the three targets than workflows with 0.22-/0.45-μm mixed cellulose ester (MCE) membranes. The improved performance was diminished when the sample volume was increased to 20 mL. Consistently greater concentrations of 16S rRNA, intI1 and vanA were yielded by filtration-based workflows using PC membranes combined with a DNeasy PowerWater (DPW) Kit, regardless of the sample volume used, and centrifugation-based workflows with DNeasy Blood & Tissue Kit for 2-mL wastewater extractions. Within the filtration-based workflows, the DPW kit yielded more detection and quantifiable results for less abundant vanA than the DNeasy PowerSoil Pro Kit and FastDNA™ SPIN Kit for Soil. These findings indicate that the performance of qPCR-based workflows for surveillance of ARGs in wastewater varies across targets, sample volumes, concentration methods and extraction kits. Workflows must be carefully considered and validated considering the target ARGs to be monitored.
Collapse
Affiliation(s)
- Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
5
|
Ahumada-Santos YP, Delgado-Vargas F, Báez-Flores ME, López-Angulo G, Díaz-Camacho SP, Moeder M, Parra-Unda JR. Multidrug resistance and class 1 integron presence in Escherichia coli isolates from a polluted drainage ditch's water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1664-1675. [PMID: 36031859 DOI: 10.1080/09603123.2022.2115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The impact of contamination of water drainage ditches in the development of antibiotic-resistant bacteria has been scarcely studied in Mexico. In this regard, 101 isolates of E. coli were obtained from water samples from a ditch in Sinaloa, during one year. The antimicrobial resistant profiles, the presence of the class 1 integron and evolutionary relationship of intI1 sequences were determined. The 47.5% of strains were resistant and 5.9% multidrug resistant (MDR) with an average multiple antibiotic resistance index value of 0.45. The highest resistance was registered with β-lactam (39.6%) and quinolone (9.9%). The intI1 gene was detected in 11.9% of the isolates, and no association with MDR was found. Sequence were associated with human and animal host isolates. MDR E. coli isolates with intI1 gene highlight the potential risk of the ditch's water to human health. An attenuation effect of MDR E. coli isolates in the outlet water was observed.
Collapse
Affiliation(s)
| | - Francisco Delgado-Vargas
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Cuiiacán, Sinaloa, Mexico
| | - María Elena Báez-Flores
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Cuiiacán, Sinaloa, Mexico
| | - Gabriela López-Angulo
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Cuiiacán, Sinaloa, Mexico
| | | | - Monika Moeder
- Department of Analytical Chemistry, UFZ-Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Jesús Ricardo Parra-Unda
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Cuiiacán, Sinaloa, Mexico
| |
Collapse
|
6
|
Denissen J, Reyneke B, Barnard T, Khan S, Khan W. Risk assessment of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa in environmental water sources: Development of surrogate models for antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166217. [PMID: 37604372 DOI: 10.1016/j.scitotenv.2023.166217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The presence of Enterococcus faecium (E. faecium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and the aminoglycoside resistance genes, aac(6')-Ib and aac(6')-aph(2″), was investigated in environmental water sources obtained from informal settlements in the Western Cape (South Africa). Using ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR) analysis, E. faecium, K. pneumoniae, and P. aeruginosa were detected in 88.9 %, 100 %, and 93.3 % of the samples (n = 45), respectively, with a significantly higher mean concentration recorded for K. pneumoniae (7.83 × 104 cells/100 mL) over the sampling period. The aac(6')-Ib gene was detected in 95.6 % (43/45) of the environmental water samples [mean concentration of 7.07 × 106 gene copies (GC)/100 mL], while the aac(6')-aph(2″) gene was detected in 100 % (n = 45) of the samples [mean concentration of 6.68 × 105 GC/100 mL]. Quantitative microbial risk assessment (QMRA) subsequently indicated that the risks posed by K. pneumoniae and P. aeruginosa were linked to intentional drinking, washing/bathing, cleaning of the home, and swimming, in the samples collected from the various sampling sites. Surrogate risk assessment models were then designed and applied for Gram-positive [aac(6')-aph(2″) gene] and Gram-negative [aac(6')-Ib gene] pathogens that may exhibit aminoglycoside resistance. The results indicated that only the Gram-negative pathogens posed a risk (>10-4) in all the samples for cleaning of the home and intentional drinking, as well as for washing laundry by hand, garden hosing, garden work, washing/bathing, accidental consumption, and swimming at the stream and marsh sites. Thus, while environmental waters may pose a health risk of exposure to pathogenic bacteria, the results obtained indicate that screening for antibiotic resistant genes, associated with multiple genera/species, could serve as a surrogate model for estimating risks with the target group under investigation.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Tobias Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 7305, South Africa
| | - Sehaam Khan
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 7305, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
7
|
Devane M, Dupont PY, Robson B, Lin S, Scholes P, Wood D, Weaver L, Webster-Brown J, Gilpin B. Mobilization of Escherichia coli and fecal source markers from decomposing cowpats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158509. [PMID: 36063947 DOI: 10.1016/j.scitotenv.2022.158509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In rural environments, the sources of fecal contamination in freshwater environments are often diffuse and a mix of fresh and aged fecal sources. It is important for water monitoring purposes, therefore, to understand the impacts of weathering on detection of the fecal source markers available for mobilization from livestock sources. This study targets the impacts of rainfall events on the mobilization of fecal source tracking (FST) markers from simulated cowpats decomposing in situ for five-and-a-half-months. The FST markers analysed were Escherichia coli, microbial source tracking (MST) markers, fecal steroids and a fecal ageing ratio based on the ratio between counts of river microflora and total coliforms. There was a substantial concentration of E. coli (104/100 mL) released from the ageing cowpats suggesting a long-term reservoir of E. coli in the cowpat. Mobilization of fecal markers from rainfall-impacted cowpats, however, was markedly reduced compared with fecal markers in the cowpat. Overall, the Bacteroidales bovine-associated MST markers were less persistent than E. coli in the cowpat and rainfall runoff. The ten fecal steroids, including the major herbivore steroid, 24-ethylcoprostanol, are shown to be stable markers of bovine pollution due to statistically similar degradation rates among all steroids. The mobilizable fraction for each FST marker in the rainfall runoff allowed generation of mobilization decline curves and the derived decline rate constants can be incorporated into source attribution models for agricultural contaminants. Findings from this study of aged bovine pollution sources will enable water managers to improve attribution of elevated E. coli to the appropriate fecal source in rural environments.
Collapse
Affiliation(s)
- Megan Devane
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Pierre-Yves Dupont
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Paula Scholes
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Christchurch, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|
8
|
Hou L, Li J, Wang H, Chen Q, Su JQ, Gad M, Ahmed W, Yu CP, Hu A. Storm promotes the dissemination of antibiotic resistome in an urban lagoon through enhancing bio-interactions. ENVIRONMENT INTERNATIONAL 2022; 168:107457. [PMID: 35963060 DOI: 10.1016/j.envint.2022.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-resistance genes (ARGs) and resistant bacteria (ARB) are abundant in stormwater that could cause serious infections, posing a potential threat to public health. However, there is no inference about how stormwater contributes to ARG profiles as well as the dynamic interplay between ARGs and bacteria via vertical gene transfer (VGT) or horizontal gene transfer (HGT) in urban water ecosystems. In this study, the distribution of ARGs, their host communities, and the source and community assembly process of ARGs were investigated in Yundang Lagoon (China) via high-throughput quantitative PCR, 16S rRNA gene amplicon sequencing, and application of SourceTracker before, after and recovering from an extreme precipitation event (132.1 mm). The abundance of ARGs and mobile genetic elements (MGEs) was the highest one day after precipitation and then decreased 2 days after precipitation and so on. Based on SourceTracker and NMDS analysis, the ARG and bacterial communities in lagoon surface water from one day after precipitation were mainly contributed by the wastewater treatment plant (WWTP) influent and effluent. However, the contribution of WWTP to ARG communities was minor 11 days after the precipitation, suggesting that the storm promoted the ARG levels by introducing the input of ARGs, MGEs, and ARB from point and non-point sources, such as sewer overflow and land-applied manure. Based on a novel microbial network analysis framework, the contribution of positive biological interactions between ARGs and MGEs or bacteria was the highest one day after precipitation, indicating a promoted VGT and HGT for ARG dissemination. The microbial networks deconstructed 11 days after precipitation, suggesting the stormwater practices (e.g., tide gate opening, diversion channels, and pumping) alleviated the spread of ARGs. These results advanced our understanding of the distribution and transport of ARGs associated with their source in urban stormwater runoff.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingfu Chen
- Yundang Lake Management Center, Xiamen, Fujian 361004, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Li Z, Guo Q, Wang S, Xu J, Fang Z, Chen J, Zhu L. Influence of site-specific factors on antibiotic resistance in agricultural soils of Yangtze River Delta: An integrated study of multi-factor modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156474. [PMID: 35660598 DOI: 10.1016/j.scitotenv.2022.156474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Agricultural soils are important reservoirs for antibiotic resistance genes (ARGs), which is closely linked to soil microorganisms. Environmental factors and co-existed pollutants may function as promoters or inhibitors for ARG proliferation to influence the agriculture green development. However, research focusing on the interaction of potential environmental drivers and ARGs is still lacking in agricultural soils. Here, we explored the microbial profile in 241 soil samples in Yangtze River Delta, and analyzed the relationship of microbial structures, ARGs, and typical site-specific factors. We found that the abundance of most ARGs was negatively correlated with the ratio of fungi and bacteria (F/B), whereas positively correlated with the ratio of gram-positive and gram-negative microbes (G+/G-). The co-occurrence network revealed significant associations among 18 site-specific factors, including 6 meteorological factors, 5 soil physicochemical properties, 5 co-existed organic pollutants, and 2 co-existed heavy metals. Random forest analysis demonstrated that F/B was mainly influenced by soil organic matters and co-existed polychlorinated biphenyls, while G+/G- was predominately regulated by soil total phosphorus and moisture content, which possibly resulting in their difference relationship with ARG abundance. Besides, the contribution of meteorological factors (>30%) in the explanation for F/B and G+/G- structures was the highest among all the site-specific factors. Together with path analysis showing meteorological factors probably affecting the ARG abundance through direct positive ways or indirect paths via physicochemical properties, microbial structure, and co-existed organic pollutants, we considered meteorological factors as the potential promoters for ARG proliferation. Collectively, these results increase our understanding of agricultural soils as hotspots of ARGs, and highlight the underappreciated role of meteorological factors as potential promoters for soil ARGs, providing reference for us to regulate ARG pollution scientifically to improve the development of green agriculture.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qian Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shujian Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jintao Xu
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Paruch L. Molecular Diagnostic Tools Applied for Assessing Microbial Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5128. [PMID: 35564522 PMCID: PMC9105083 DOI: 10.3390/ijerph19095128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Microbial water quality is of vital importance for human, animal, and environmental health. Notably, pathogenically contaminated water can result in serious health problems, such as waterborne outbreaks, which have caused huge economic and social losses. In this context, the prompt detection of microbial contamination becomes essential to enable early warning and timely reaction with proper interventions. Recently, molecular diagnostics have been increasingly employed for the rapid and robust assessment of microbial water quality implicated by various microbial pollutants, e.g., waterborne pathogens and antibiotic-resistance genes (ARGs), imposing the most critical health threats to humans and the environment. Continuous technological advances have led to constant improvements and expansions of molecular methods, such as conventional end-point PCR, DNA microarray, real-time quantitative PCR (qPCR), multiplex qPCR (mqPCR), loop-mediated isothermal amplification (LAMP), digital droplet PCR (ddPCR), and high-throughput next-generation DNA sequencing (HT-NGS). These state-of-the-art molecular approaches largely facilitate the surveillance of microbial water quality in diverse aquatic systems and wastewater. This review provides an up-to-date overview of the advancement of the key molecular tools frequently employed for microbial water quality assessment, with future perspectives on their applications.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO Oluf Thesens vei 43, 1433 Aas, Norway
| |
Collapse
|
11
|
Orel N, Fadeev E, Klun K, Ličer M, Tinta T, Turk V. Bacterial Indicators Are Ubiquitous Members of Pelagic Microbiome in Anthropogenically Impacted Coastal Ecosystem. Front Microbiol 2022; 12:765091. [PMID: 35111137 PMCID: PMC8801744 DOI: 10.3389/fmicb.2021.765091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Coastal zones are exposed to various anthropogenic impacts, such as different types of wastewater pollution, e.g., treated wastewater discharges, leakage from sewage systems, and agricultural and urban runoff. These various inputs can introduce allochthonous organic matter and microbes, including pathogens, into the coastal marine environment. The presence of fecal bacterial indicators in the coastal environment is usually monitored using traditional culture-based methods that, however, fail to detect their uncultured representatives. We have conducted a year-around in situ survey of the pelagic microbiome of the dynamic coastal ecosystem, subjected to different anthropogenic pressures to depict the seasonal and spatial dynamics of traditional and alternative fecal bacterial indicators. To provide an insight into the environmental conditions under which bacterial indicators thrive, a suite of environmental factors and bacterial community dynamics were analyzed concurrently. Analyses of 16S rRNA amplicon sequences revealed that the coastal microbiome was primarily structured by seasonal changes regardless of the distance from the wastewater pollution sources. On the other hand, fecal bacterial indicators were not affected by seasons and accounted for up to 34% of the sequence proportion for a given sample. Even more so, traditional fecal indicator bacteria (Enterobacteriaceae) and alternative wastewater-associated bacteria (Lachnospiraceae, Ruminococcaceae, Arcobacteraceae, Pseudomonadaceae and Vibrionaceae) were part of the core coastal microbiome, i.e., present at all sampling stations. Microbial source tracking and Lagrangian particle tracking, which we employed to assess the potential pollution source, revealed the importance of riverine water as a vector for transmission of allochthonous microbes into the marine system. Further phylogenetic analysis showed that the Arcobacteraceae in our data set was affiliated with the pathogenic Arcobacter cryaerophilus, suggesting that a potential exposure risk for bacterial pathogens in anthropogenically impacted coastal zones remains. We emphasize that molecular analyses combined with statistical and oceanographic models may provide new insights for environmental health assessment and reveal the potential source and presence of microbial indicators, which are otherwise overlooked by a cultivation approach.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- *Correspondence: Neža Orel,
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Matjaž Ličer
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Office for Meteorology, Hydrology and Oceanography, Slovenian Environment Agency, Ljubljana, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Tinkara Tinta,
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
12
|
Makkaew P, Kongprajug A, Chyerochana N, Sresung M, Precha N, Mongkolsuk S, Sirikanchana K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters. Int J Hyg Environ Health 2021; 238:113859. [PMID: 34655856 DOI: 10.1016/j.ijheh.2021.113859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that threaten human health and ecosystems. Anthropogenic activities and wastewater could be ARB and ARG pollution sources; however, research on ARG abundance and microbial source tracking (MST) of contamination in tropical marine waters is limited. This study examined spatiotemporal variations of six ARGs (blaNDM, blaTEM, blaVIM, mcr-1, sul1, and tetQ) against the widely used antibiotic groups and a class 1 integron-integrase gene (intI1) at two Thai tropical recreational beaches (n = 41). Correlations between ARGs and sewage-specific MST markers (i.e., crAssphage and human polyomaviruses [HPyVs]) and fecal indicator bacteria (i.e., total coliforms, fecal coliforms, and enterococci) were also investigated. BlaTEM, intI1, sul1, and tetQ were ubiquitous at both beaches (85.4-100% detection rate); intI1 was the most abundant (3-6 orders in log10 copies/100 mL), followed by blaTEM (2-4 orders), sul1 (2-3 orders), and tetQ (2-4 orders). BlaNDM was found in 7.3% (up to 4 orders), and no mcr-1 was detected. Interestingly, blaVIM was prevalent at one beach (2-5 orders; n = 17), but found in only one sample at the other (4 orders). Temporal, but not spatial, differences were noticed; blaTEM was at higher levels in the wet season. IntI1 correlated with sul1 and tetQ (Spearman's rho = 0.47-0.97), suggesting potential horizontal gene transfer. CrAssphage, but not HPyVs, correlated with intI1, sul1, and tetQ (Spearman's rho = 0.50-0.74). Higher numbers of ARGs tended to co-occur in samples with higher crAssphage concentrations, implying sewage contribution to the marine water, with a persisting ARG background. This study provides insight into the ARG pollution status of tropical coastal waters and suggests crAssphage as a proxy for ARG pollution, which could facilitate effective management policies to minimize ARG dissemination in marine environments.
Collapse
Affiliation(s)
- Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|