1
|
Martinez-Rios V, Idrizi R, Dalgaard P, Truelstrup Hansen L, Hansen TB. Modeling and predicting growth and growth boundary of Bacillus cereus s.l. from phylogroups II, IV, V, and VI in starchy foods at or below 12°C. Front Microbiol 2025; 16:1531014. [PMID: 40376460 PMCID: PMC12080233 DOI: 10.3389/fmicb.2025.1531014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Pathogenic Bacillus cereus s.l. can survive cooking of starchy foods and grow at chilled storage temperatures, highlighting foods with extended chilled shelf life as a risk factor. Some food administrations encourage use of predictive microbiology to support decisions of safe shelf lives. Therefore, the present study embarked on identifying a model from literature and/or expanding an existing model to enable accurate predictions of growth and no-growth responses of relevant B. cereus s.l. in starchy ready-to-eat and ready-to-cook foods when stored at temperatures at or below 12°C. The study focused on isolates belonging to psychrotolerant or mesophilic-psychrotolerant intermediary thermotypes in panC-groups II, IV, V, or VI and generated data for growth kinetics for various pH (4.8-7.8), aw (0.935-0.999) and storage temperatures (6.0-11.7°C) in 42 starchy foods (bulgur, couscous, pasta, potatoes, rice) and eight composite foods containing at least one starchy ingredient. Using 21 of the growth kinetics obtained for starchy foods, the five best performing of 10 available growth models were selected for improvement by product calibration and/or expansion with terms to consider the effect of interactions between temperature, pH and aw. Of 410 updated models, nine showed promising performance and were evaluated using the remaining 21 growth kinetics obtained in starchy foods. Two models could be considered validated for these products with Bf /Af -values of 0.87/1.21 and 1.01/1.32, respectively. Both models provided ≥75% correct predictions of the growth/no-growth responses and did not provide any fail-dangerous predictions. Further evaluation of these models for predictions of maximum specific growth rates (μmax , h-1) and growth/no-growth responses for a broader range of starchy foods used 33 challenge tests from the scientific literature and eight challenge tests from the present study, and remarkably showed that the performance of both models was poor for composite protein-rich starchy foods with Bf -values ≤0.64 and Af -values ≥1.96, meaning these models should not be used for such products as μmax might be under-predicted creating unsafe situations. However, for other starchy foods, one of the validated models was found to be acceptable on the safe side with Bf - and Af -values of 1.34 and 1.57, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Tina Beck Hansen
- The National Food Institute (DTU Food), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Maktabdar M, Houmann RH, Scheel NH, Skytthe KB, Wemmenhove E, Gkogka E, Dalgaard P. Evaluation and validation of extensive growth and growth boundary models for mesophilic and psychrotolerant Bacillus cereus in dairy products (Part 2). Front Microbiol 2025; 16:1553903. [PMID: 40231235 PMCID: PMC11994723 DOI: 10.3389/fmicb.2025.1553903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Performance was evaluated for two extensive models to predict growth and growth boundaries of mesophilic and psychrotolerant Bacillus cereus in dairy products. Both models incorporated the inhibitory effect of 11 environmental factors and of their interactions. The two models were calibrated and evaluated using data from 66 and 67 new challenge tests, respectively, conducted with various types of well-characterized dairy products. Additionally, the mesophilic model was evaluated using 139 growth responses from literature (growth/no-growth, lag time, and μmax values) for 24 different B. cereus strains. The psychrotolerant model was evaluated using 109 growth responses from published studies and including data for 26 strains in dairy products. The predictive performance of the evaluated models was compared with four existing models for mesophilic B. cereus and four different models for psychrotolerant B. cereus. The new mesophilic model had good performance and predicted growth responses in new challenge tests, with bias-/accuracy-factor values of 1.13/1.49 and 80% correct, 17% fail-safe, and 3% fail-dangerous growth/no-growth predictions. With literature data for mesophilic B. cereus, predictions were good with bias-/accuracy-factor values of 0.97/1.36 and 91% correct, 9% fail-safe, and 0% fail-dangerous predictions. The evaluated psychrotolerant model also exhibited good performance in predicting growth responses for new challenge tests, with bias-/accuracy-factor values of 1.07/1.38 and 84% correct, 14% fail-safe, and 2% fail-dangerous predictions for growth/no-growth responses. With literature data for psychrotolerant B. cereus, this model did not acceptably predict growth rates at temperatures <10°C. Therefore, the temperature term of the model was expanded at temperatures from 1°C to 10°C. The performance of the updated psychrotolerant model was markedly improved, achieving bias-/accuracy-factor of 1.07/1.80, and 91% correct, 9% fail-safe, and 0% fail-dangerous predictions. The two new and extensive models offer significant advantages over existing models by including the growth inhibiting effects of more environmental factors and their interactions, resulting in un-biased predictions for a wider range of dairy matrices. These validated models can support management of mesophilic and psychrotolerant B. cereus growth in diverse dairy products, contribute to risk assessments and to optimization of combinations of relevant growth-inhibitory factors during product formulation and innovation.
Collapse
Affiliation(s)
- Maryam Maktabdar
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Rannvá Høgnadóttir Houmann
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nanna Hulbæk Scheel
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karoline Broskov Skytthe
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ellen Wemmenhove
- Arla Foods Ingredients Innovation Center, Arla Foods Ingredients, Videbæk, Denmark
| | | | - Paw Dalgaard
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Maktabdar M, Wemmenhove E, Gkogka E, Dalgaard P. Development of extensive growth and growth boundary models for mesophilic and psychrotolerant Bacillus cereus in dairy products (Part 1). Front Microbiol 2025; 16:1553885. [PMID: 40190734 PMCID: PMC11968683 DOI: 10.3389/fmicb.2025.1553885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Guidelines for combinations of product characteristics to prevent unacceptable growth of Bacillus cereus in foods are lacking, and models are therefore valuable for predicting these responses. B. cereus isolates of dairy origin were used to generate a comprehensive dataset to develop two cardinal parameter growth and growth boundary models for mesophilic and psychrotolerant B. cereus, respectively. Each model incorporated the inhibitory effect of 11 environmental factors, i.e., temperature, pH, NaCl/aw, organic acids (acetic, benzoic, citric, lactic, and sorbic), phosphate salts (orthophosphate, diphosphate, and triphosphate), and the effect of interactions between these factors. Cardinal parameter values for mesophilic and psychrotolerant strain cocktails were estimated using 231 and 203 maximum specific growth rates (μmax values), respectively, generated in a standard liquid laboratory medium (BHI broth). Furthermore, an additional 113 and 100 μmax values were generated for the two strain cocktails using a dairy-specific liquid medium (an ultra-filtration permeate from whey) to evaluate growth responses obtained in BHI broth. Cardinal parameter values for the two extensive growth boundary models were selected conservatively using data from BHI broth or UF permeate, such that the widest growth range was obtained for each environmental factor. The studied cocktail of six vegetative mesophilic B. cereus isolates exhibited greater acid tolerance in UF permeate than in BHI broth with lower pHmin (pHmin values of 4.75 versus 4.98), higher minimum inhibitory concentrations (MIC) of undissociated lactic acid (MICu,LAC of 2.99 versus 2.34 mM) and total citric acid (MICT,CAC of 169.1 versus 82.5 mM). The psychrotolerant B. cereus strain cocktail also had lower pHmin and higher values for MICLAC and MICT,CAC in UF permeate than in BHI broth. The remaining cardinal parameter values were determined from growth rates in BHI broth. The two new models can predict the combined effect of storage temperature and a wide range of dairy product characteristics, including combinations of organic acids and phosphate melting salts. These growth and growth boundary models can support the evaluation and management of the two B. cereus subgroups in various dairy products. However, product validation of the two predictive models is required to determine their performance and range of applicability.
Collapse
Affiliation(s)
- Maryam Maktabdar
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ellen Wemmenhove
- Arla Foods Ingredients Innovation Center, Arla Foods Ingredients, Videbæk, Denmark
| | | | - Paw Dalgaard
- Food Microbiology and Hygiene, DTU National Food Institute (DTU Food), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Powell DJ, Li D, Smith B, Chen WN. Cultivated meat microbiological safety considerations and practices. Compr Rev Food Sci Food Saf 2025; 24:e70077. [PMID: 39731713 DOI: 10.1111/1541-4337.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/30/2024]
Abstract
Cultivated meat, produced using cell culture technology, is an alternative to conventional meat production that avoids the risks from enteric pathogens associated with animal slaughter and processing. Cultivated meat therefore has significant theoretical microbiological safety advantages, though limited information is available to validate this. This review discusses sources and vectors of microbial contamination throughout cultivated meat production, introduces industry survey data to evaluate current industry practices for monitoring and mitigating these hazards, and highlights future research needs. Industry survey respondents reported an average microbiological contamination batch failure rate of 11.2%. The most common vectors were related to personnel, equipment, and the production environment, while the most commonly reported type of microbiological contaminant was bacteria. These will likely remain prominent vectors and source organisms in commercial-scale production but can be addressed by a modified combination of existing commercial food and biopharmaceutical production safety systems such as Hazard Analysis and Critical Control Points (HACCP), Good Manufacturing Practices (GMP), and Good Cell Culture Practice (GCCP). As the sector matures and embeds these and other safety management systems, microbiological contamination issues should be surmountable. Data are also included to investigate whether the limited microbiome of cultivated products poses a novel food safety risk. However, further studies are needed to assess the growth potential of microorganisms in different cultivated meat products, taking into account factors such as their composition, pH, water activity, and background microflora.
Collapse
Affiliation(s)
- Dean Joel Powell
- The Good Food Institute Asia Pacific (GFI APAC), Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Bezos Center for Sustainable Protein, National University of Singapore, Singapore, Singapore
| | - Ben Smith
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Wei Ning Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Future Ready Food Safety Hub (FRESH), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Freire V, Casañas L, Laborda L, Condón S, Gayán E. Influence of Sporulation Temperature on Germination and Growth of B. weihenstephanensis Strains in Specific Nutrients and in an Extended Shelf-Life Refrigerated Matrix Under Commercial Pasteurization and Storage Conditions. Foods 2024; 13:3434. [PMID: 39517218 PMCID: PMC11545089 DOI: 10.3390/foods13213434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Extended shelf-life (ESL) refrigerated ready-to-eat foods are thermally pasteurized to ensure food safety and stability. However, surviving psychrotrophic Bacillus cereus spores can still pose a challenge. Studies predicting their behavior often overlook sporulation conditions. This study investigated the effect of sporulation temperature on germination of three Bacillus weihenstephanensis strains in specific nutrients (inosine and/or amino acids) with or without prior heat activation (80 °C, 10 min). Sporulation temperature variably affected germination, with stronger effects in moderately responsive strains and nutrients. Heat activation strongly stimulated germination, particularly in nutrients with poorer responses, mitigating differences induced by sporulation temperature. The influence of sporulation temperature on germination and growth in an ESL matrix at refrigeration temperatures (4 °C or 8 °C) in vacuum packaging after heat activation or commercial pasteurization (90 °C, 10 min) was also studied. The latter treatment increased germination rates of surviving spores; however, some strains suffered damage and lost viability upon germination at 4 °C but recovered and grew at 8 °C. These findings highlight the need to account for variability in spore recovery and outgrowth during quantitative risk assessments for psychrotrophic B. cereus in ESL foods.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), Faculty of Veterinary, University of Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain; (V.F.); (L.C.); (S.C.)
| |
Collapse
|
6
|
Gong Y, Sun L, Wan X, Geng P, Hu X. Characterization of the novel bequatrovirus vB-BcgM and its antibacterial effects in a food matrix. Arch Virol 2024; 169:204. [PMID: 39298014 DOI: 10.1007/s00705-024-06134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/21/2024] [Indexed: 09/21/2024]
Abstract
Bacteria belonging to the Bacillus cereus group are ubiquitous in nature, causing food spoilage and food poisoning cases. A bequatrovirus, vB-BcgM, belonging to the C3 cluster infecting B. cereus group members, was isolated and characterized. Its 160-kb linear dsDNA genome contains a number of replication-related coding sequences (CDSs) and displays a collinear relationship with that of the virulent phage B4, with variations in its structural and replication regions. vB-BcgM has a relatively broad host range, with the ability to infect 33.3% of the B. cereus group isolates tested, including B. cereus, B. thuringiensis, B. anthracis, B. paranthracis, B. mycoides, and B. cytotoxicus. Moreover, vB-BcgM displays efficient infection and high replication capacity. It was found that 96.5% of the virions complete the adsorption process within 5 min. The optimal multiplicity of infection (MOI) is 10-7, and the burst size is 63 plaque-forming units (PFU)/cell. This phage showed stability over a broad pH range (4-12) and at temperatures up to 70 °C. Furthermore, vB-BcgM displays significant antibacterial effects in processed food matrices (ultra-high temperature [UHT] sterilized milk [GB 25190], UHT refrigerated milk [GB 25190], pasteurized milk [GB 19645], mashed meat, and cereals) and fresh foods (lettuce, apple, and potato). The antibacterial effects were found to be dependent on the dose of viral inoculum, incubation conditions (food matrix and temperature), and time. The data indicate that vB-BcgM has good potential as an antibacterial agent.
Collapse
Affiliation(s)
- Yunfei Gong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lin Sun
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaofu Wan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Peiling Geng
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaomin Hu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
7
|
Wang Y, Liu Y, Yang S, Chen Y, Liu Y, Lu D, Niu H, Ren F, Xu A, Dong Q. Effect of Temperature, pH, and a w on Cereulide Synthesis and Regulator Genes Transcription with Respect to Bacillus cereus Growth and Cereulide Production. Toxins (Basel) 2024; 16:32. [PMID: 38251248 PMCID: PMC10818934 DOI: 10.3390/toxins16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Bacillus cereus is a food-borne pathogen that can produce cereulide in the growth period, which causes food poisoning symptoms. Due to its resistance to heat, extreme pH, and proteolytic enzymes, cereulide poses a serious threat to food safety. Temperature, pH, and aw can influence cereulide production, but there is still a lack of research with multi-environmental impacts. In this study, the effects of temperature (15~45 °C), pH (5~8), and aw (0.945~0.996) on the emetic reference strain B. cereus F4810/72 growth, cereulide production, relevant ces genes (cesA, cesB, cesP), and transcription regulators genes (codY and abrB) expression at transcription level were studied. B. cereus survived for 4~53 h or grew to 6.85~8.15 log10 CFU/mL in environmental combinations. Cereulide accumulation was higher in mid-temperature, acidic, or high aw environments. Increased temperature resulted in a lower cereulide concentration at pH 8 or aw of 0.970. The lowest cereulide concentration was found at pH 6.5 with an increased aw from 0.970 to 0.996. Water activity had a strong effect on transcriptional regulator genes as well as the cesB gene, and temperature was the main effect factor of cesP gene expression. Moreover, environmental factors also impact cereulide synthesis at transcriptional levels thereby altering the cereulide concentrations. The interaction of environmental factors may result in the survival of B. cereus without growth for a period. Gene expression is affected by environmental factors, and temperature and pH may be the main factors influencing the correlation between B. cereus growth and cereulide formation. This study contributed to an initial understanding of the intrinsic link between the impact of environmental factors and cereulide formation and provided valuable information for clarifying the mechanism of cereulide synthesis in combined environmental conditions.
Collapse
Affiliation(s)
- Yating Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Yuhang Chen
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yang Liu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China;
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, Shanghai 200336, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Fanchong Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Anning Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.L.); (S.Y.)
| |
Collapse
|
8
|
Masquelier J, Segers C, Jacobs B, Van Nieuwenhuysen T, Delbrassinne L, Van Hoeck E. Validation of a Targeted LC-MS/MS Method for Cereulide and Application in Food and Faeces. Toxins (Basel) 2023; 16:13. [PMID: 38251230 PMCID: PMC10819378 DOI: 10.3390/toxins16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cereulide is an emetic toxin produced by some strains of Bacillus cereus. This bacterial toxin, a cyclic 1.2 kDa dodecadepsipeptide, is stable to heat and acids and causes nausea and vomiting when ingested via contaminated food. This work aimed to develop and validate a targeted analytical method applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify this toxin in food and human faeces. Samples were extracted with acetonitrile in the presence of 13C6-cereulide, a labelled internal standard, and purified by centrifugation and filtration. The limits of quantification were 0.5 and 0.3 µg kg-1 for food and faeces, respectively. The linearity of the method was very good, with calculated R2 values above 0.995. The mean recovery of the method was within the acceptable range of 70.0%-120.0%, the repeatability was not higher than 7.3%, and the highest intra-laboratory reproducibility was 8.9%. The estimated range for the expanded measurement uncertainty was between 5.1% and 18.0%. The LC-MS/MS method was used to analyse one food sample (rice) from a Belgian foodborne outbreak and five faecal samples from patients with clinical symptoms after consumption of the contaminated rice. The levels of cereulide were 12.22 µg g-1 for food and between 6.32 and 773.37 ng g-1 for faecal samples.
Collapse
Affiliation(s)
- Julien Masquelier
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Céline Segers
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Bram Jacobs
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Tom Van Nieuwenhuysen
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Laurence Delbrassinne
- Food Pathogens, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - Els Van Hoeck
- Organic Contaminants and Additives, Sciensano, Scientific Institute of Public Health, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Bogaerts B, Fraiture MA, Huwaert A, Van Nieuwenhuysen T, Jacobs B, Van Hoorde K, De Keersmaecker SCJ, Roosens NHC, Vanneste K. Retrospective surveillance of viable Bacillus cereus group contaminations in commercial food and feed vitamin B 2 products sold on the Belgian market using whole-genome sequencing. Front Microbiol 2023; 14:1173594. [PMID: 37415815 PMCID: PMC10321352 DOI: 10.3389/fmicb.2023.1173594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Bacillus cereus is a spore-forming bacterium that occurs as a contaminant in food and feed, occasionally resulting in food poisoning through the production of various toxins. In this study, we retrospectively characterized viable B. cereus sensu lato (s.l.) isolates originating from commercial vitamin B2 feed and food additives collected between 2016 and 2022 by the Belgian Federal Agency for the Safety of the Food Chain from products sold on the Belgian market. In total, 75 collected product samples were cultured on a general medium and, in case of bacterial growth, two isolates per product sample were collected and characterized using whole-genome sequencing (WGS) and subsequently characterized in terms of sequence type (ST), virulence gene profile, antimicrobial resistance (AMR) gene profile, plasmid content, and phylogenomic relationships. Viable B. cereus was identified in 18 of the 75 (24%) tested products, resulting in 36 WGS datasets, which were classified into eleven different STs, with ST165 (n = 10) and ST32 (n = 8) being the most common. All isolates carried multiple genes encoding virulence factors, including cytotoxin K-2 (52.78%) and cereulide (22.22%). Most isolates were predicted to be resistant to beta-lactam antibiotics (100%) and fosfomycin (88.89%), and a subset was predicted to be resistant to streptothricin (30.56%). Phylogenomic analysis revealed that some isolates obtained from different products were closely related or even identical indicating a likely common origin, whereas for some products the two isolates obtained did not show any close relationship to each other or other isolates found in other products. This study reveals that potentially pathogenic and drug-resistant B. cereus s.l. can be present in food and feed vitamin B2 additives that are commercially available, and that more research is warranted to assess whether their presence in these types of products poses a threat to consumers.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | - Bram Jacobs
- Foodborne Pathogens, Sciensano, Brussels, Belgium
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
10
|
Bianco A, Normanno G, Capozzi L, Del Sambro L, Di Fato L, Miccolupo A, Di Taranto P, Caruso M, Petruzzi F, Ali A, Parisi A. High Genetic Diversity and Virulence Potential in Bacillus cereus sensu lato Isolated from Milk and Cheeses in Apulia Region, Southern Italy. Foods 2023; 12:foods12071548. [PMID: 37048369 PMCID: PMC10094235 DOI: 10.3390/foods12071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
The Bacillus cereus group includes species that act as food-borne pathogens causing diarrheal and emetic symptoms. They are widely distributed and can be found in various foods. In this study, out of 550 samples of milk and cheeses, 139 (25.3%) were found to be contaminated by B. cereus sensu lato (s.l.). One isolate per positive sample was characterized by Multilocus Sequence Typing (MLST) and for the presence of ten virulence genes. Based on MLST, all isolates were classified into 73 different sequence types (STs), of which 12 isolates were assigned to new STs. Virulence genes detection revealed that 90% and 61% of the isolates harboured the nheABC and the hblCDA gene cluster, respectively. Ninety-four percent of the isolates harboured the enterotoxin genes entS and entFM; 8% of the isolates possessed the ces gene. Thirty-eight different genetic profiles were identified, suggesting a high genetic diversity. Our study clearly shows the widespread diffusion of potentially toxigenic isolates of B. cereus s.l. in milk and cheeses in the Apulia region highlighting the need to adopt GMP and HACCP procedures along every step of the milk and cheese production chain in order to reduce the public health risk linked to the consumption of foods contaminated by B. cereus s.l.
Collapse
Affiliation(s)
- Angelica Bianco
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Giovanni Normanno
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Del Sambro
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Di Fato
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Angela Miccolupo
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Pietro Di Taranto
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Fiorenza Petruzzi
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Ashraf Ali
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| |
Collapse
|
11
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
12
|
Hwang D, Park JH, Yoon Y, Ha S, Rhee MS, Koo M, Kim HJ. Mathematical modeling of
Bacillus cereus
in
Saengsik
, a powdered
ready‐to‐eat
food and its application in quantitative microbial risk assessment. J Food Saf 2022. [DOI: 10.1111/jfs.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Daekeun Hwang
- Food Safety and Distribution Research Group Korea Food Research Institute Wanju Republic of Korea
- Department of Food Biotechnology University of Science and Technology Daejeon Republic of Korea
| | - Jin Hwa Park
- Food Safety and Distribution Research Group Korea Food Research Institute Wanju Republic of Korea
| | - Yohan Yoon
- Department of Food and Nutrition Sookmyung Women's University Seoul Republic of Korea
| | - Sang‐Do Ha
- Department of Food Science and Technology Chung‐Ang University Anseong Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology Korea University Seoul Republic of Korea
| | - Minseon Koo
- Food Safety and Distribution Research Group Korea Food Research Institute Wanju Republic of Korea
- Department of Food Biotechnology University of Science and Technology Daejeon Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group Korea Food Research Institute Wanju Republic of Korea
- Department of Food Biotechnology University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
13
|
Bacillus cereus in Dairy Products and Production Plants. Foods 2022; 11:foods11172572. [PMID: 36076758 PMCID: PMC9455733 DOI: 10.3390/foods11172572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Spore-forming Bacillus cereus is a common contaminant of dairy products. As the microorganism is widespread in the environment, it can contaminate milk at the time of milking, but it can also reach the dairy products in each phase of production, storage and ripening. Milk pasteurization treatment is not effective in reducing contamination and can instead act as an activator of spore germination, and a potential associated risk still exists with the consumption of some processed foods. Prevalences and concentrations of B. cereus in milk and dairy products are extremely variable worldwide: in pasteurized milk, prevalences from 2% to 65.3% were reported, with concentrations of up to 3 × 105 cfu/g, whereas prevalences in cheeses ranged from 0 to 95%, with concentrations of up to 4.2 × 106 cfu/g. Bacillus cereus is also well known to produce biofilms, a serious concern for the dairy industry, with up to 90% of spores that are resistant to cleaning and are easily transferred. As the contamination of raw materials is not completely avoidable, and the application of decontamination treatments is only possible for some ingredients and is limited by both commercial and regulatory reasons, it is clear that the correct application of hygienic procedures is extremely important in order to avoid and manage the circulation of B. cereus along the dairy supply chain. Future developments in interventions must consider the synergic application of different mild technologies to prevent biofilm formation and to remove or inactivate the microorganism on the equipment.
Collapse
|
14
|
Di Biase M, Le Marc Y, Bavaro AR, De Bellis P, Lonigro SL, Lavermicocca P, Postollec F, Valerio F. A Predictive Growth Model for Pro-technological and Probiotic Lacticaseibacillus paracasei Strains Fermenting White Cabbage. Front Microbiol 2022; 13:907393. [PMID: 35733952 PMCID: PMC9207389 DOI: 10.3389/fmicb.2022.907393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial strains belonging to Lacticaseibacillus paracasei species are generally used as starters in food fermentations and/or as probiotics. In the current study, the growth cardinal parameters of four L. paracasei strains (IMPC2.1, IMPC4.1, P40 and P101), isolated from table olives or human source, were determined. Strains were grown in liquid medium and incubated at several temperatures (10 values from 5.5°C–40°C) and pH (15 values from 3.2 to 9.1) along the growth range. The cardinal temperature model was used to describe temperature effects on the maximum specific growth rate of L. paracasei whereas new equations were developed for the effect of pH. The estimated Tmin values ranged between −0.97°C and 1.95°C and were lower than 0°C for strains IMPC4.1 and P101. Strain P40 was able to grow in the most restricted range of temperature (from 1.95°C to 37.46°C), while strain IMPC4.1 was estimated to survive at extreme conditions showing the lowest pHmin. Maximum specific growth rates of L. paracasei IMPC2.1 in white cabbage (Brassica oleracea var. capitata) were used to calculate the correction factor (Cf) defined as the bias between the bacterial maximum specific growth rate in broth and in the food matrix. A simple bi-linear model was also developed for the effect of temperature on the maximum population density reached in white cabbage. This information was further used to simulate the growth of L. paracasei strains in cabbage and predict the time to reach the targeted probiotic level (7 log10 CFU/g) using in silico simulations. This study demonstrates the potential of the predictive microbiology to predict the growth of beneficial and pro-technological strains in foods in order to optimize the fermentative process.
Collapse
Affiliation(s)
- Mariaelena Di Biase
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Yvan Le Marc
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Creac'h Gwen, Quimper Cedex, France
| | - Anna Rita Bavaro
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Palmira De Bellis
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Stella Lisa Lonigro
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Paola Lavermicocca
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Florence Postollec
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Creac'h Gwen, Quimper Cedex, France
| | - Francesca Valerio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
15
|
Detection of emetic Bacillus cereus and the emetic toxin cereulide in food matrices: Progress and perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Yashini M, Auddy I, Shanmugasundaram S, Vidyalakshmi R, Sunil CK. Characterization of Antibody Immobilization on Chitosan/Gelatin-Modified Electrode and Its Application to Bacillus cereus Detection in Cereal-Based Food. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02299-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Peleg M. A New Look at Models of the Combined Effect of Temperature, pH, Water Activity, or Other Factors on Microbial Growth Rate. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Walser V, Kranzler M, Dawid C, Ehling-Schulz M, Stark TD, Hofmann TF. Distribution of the Emetic Toxin Cereulide in Cow Milk. Toxins (Basel) 2021; 13:toxins13080528. [PMID: 34437398 PMCID: PMC8402402 DOI: 10.3390/toxins13080528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus cereus is frequently associated with food-borne intoxications, and its emetic toxin cereulide causes emesis and nausea after consumption of contaminated foods. The major source for contamination is found within contaminated raw materials containing the highly chemically resistant cereulide, independent of vegetative bacteria cells. Up to date, non-existing removal strategies for cereulide evoke the question of how the toxin is distributed within a food sample, especially cow milk. Milk samples with different milk fat contents were incubated with purified cereulide, separated by centrifugation into a lipid and an aqueous phase, and cereulide was quantified in both fractions by SIDA-LC-MS/MS. By artificially increasing the milk fat content from 0.5% to 50%, the amount of cereulide recovered in the lipid phase and could be augmented from 13.3 to 78.6%. Further, the ratio of cereulide increased in the lipid phase of milk with additional plant-based lipid (sunflower oil) to 47.8%. This demonstrated a clear affinity of cereulide towards the hydrophobic, lipid phase, aligning with cereulide's naturally strong hydrophobic properties. Therefore, an intensified cereulide analysis of lipid enriched dairy products to prevent severe cereulide intoxications or cross-contamination in processed foods is suggested.
Collapse
Affiliation(s)
- Veronika Walser
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
| | - Markus Kranzler
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (M.E.-S.)
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.K.); (M.E.-S.)
| | - Timo D. Stark
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
- Correspondence: ; Tel.: +49-8161-71-2911
| | - Thomas F. Hofmann
- Food Chemistry and Molecular Sensory Science, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (V.W.); (C.D.); (T.F.H.)
| |
Collapse
|
19
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|