1
|
Çelik A, Çakar D, Derviş S, Morca AF, Akıllı Şimşek S, Romon-Ochoa P, Özer G. New Detection Methods for Cryphonectria Hypovirus 1 (CHV1) through SYBR Green-Based Real-Time PCR and Loop-Mediated Isothermal Amplification (LAMP). Viruses 2024; 16:1203. [PMID: 39205177 PMCID: PMC11360611 DOI: 10.3390/v16081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. Cryphonectria parasitica, the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced. The ORF A and ORF B regions of CHV1 are targeted by these techniques, which employ colorimetric loop-mediated isothermal amplification (LAMP) with 2 Colorimetric LAMP Master Mix and real-time quantitative PCR (qPCR) with SYBR Green chemistry, respectively. The LAMP assay presents a discernible color transition, changing from pink to yellow after a 35 min incubation period. Comparative analysis, when assessed against two established reverse transcription-PCR (RT-PCR) techniques, reveals a significant enhancement in sensitivity for both the LAMP approach, which offers a tenfold increase, and the qPCR method, which showcases a remarkable 100-fold sensitivity improvement. Throughout the comparison phase, it was evident that the RT-PCR, LAMP, and qPCR procedures displayed superior performance compared to the Bavendamm test, relying on phenol oxidase activity, effectively distinguishing hypovirulent strains. Consequently, this study introduces two pioneer diagnostic assays for highly sensitive CHV1 detection, representing a substantial advancement in the realm of CHV1 surveillance techniques. These methodologies hold significant promise for enhancing research endeavors in the domain of the biological control of C. parasitica.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Deniz Çakar
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Sibel Derviş
- Department of Plant Protection, Faculty of Kızıltepe Agricultural Sciences and Technologies, Mardin Artuklu University, Mardin 47000, Türkiye
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin 47000, Türkiye
| | - Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Türkiye
| | - Seçil Akıllı Şimşek
- Department of Biology, Faculty of Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham GU10 4LH, UK
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| |
Collapse
|
2
|
Nito F, Oya H, Matsuura T, Yanagisawa H. Advancing broad bean true mosaic virus detection using conventional RT-PCR and real-time RT-PCR with novel primer set design. J Virol Methods 2024; 327:114946. [PMID: 38677554 DOI: 10.1016/j.jviromet.2024.114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Broad bean true mosaic virus (BBTMV) infects broad beans and peas, reducing yield. As BBTMV is transmitted through broad beans, many countries have implemented regulations to prevent the distribution of infected seeds. Currently, enzyme-linked immunosorbent assay (ELISA) is commonly used to detect BBTMV. While the PCR-based method is preferred for seed virus detection due to its sensitivity and speed. A BBTMV-specific PCR detection method has not yet been reported. A universal detection method currently exists that utilizes reverse transcription PCR (RT-PCR) for the Comovirus genus, to which BBTMV belongs. However, sequence analysis is required for species identification. To address this limitation, we developed and verified RT-PCR detection methods using newly designed BBTMV-specific primers. RT-PCR and real-time RT-PCR with these primers were approximately 5 × 105-106 times more sensitive than ELISA and 100-1000 times more sensitive than previously reported RT-PCR methods. Using RT-PCR and real-time RT-PCR employing these primers, we could detect BBTMV with same sensitivity when more than 3.0 × 105 copies were present per gram of broad bean seeds. Our newly developed detection methods can test for BBTMV with high sensitivity and speed.
Collapse
Affiliation(s)
- Fumino Nito
- Research Division, Yokohama Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries (MAFF), 1-16-10 Shinyamashita, Naka-ku, Yokohama, Kanagawa 231-0801, Japan
| | - Hitoshi Oya
- Research Division, Yokohama Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries (MAFF), 1-16-10 Shinyamashita, Naka-ku, Yokohama, Kanagawa 231-0801, Japan
| | - Takayuki Matsuura
- Research Division, Yokohama Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries (MAFF), 1-16-10 Shinyamashita, Naka-ku, Yokohama, Kanagawa 231-0801, Japan
| | - Hironobu Yanagisawa
- Research Division, Yokohama Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries (MAFF), 1-16-10 Shinyamashita, Naka-ku, Yokohama, Kanagawa 231-0801, Japan.
| |
Collapse
|
3
|
Nash D, Ellmen I, Knapp JJ, Menon R, Overton AK, Cheng J, Lynch MDJ, Nissimov JI, Charles TC. A Novel Tiled Amplicon Sequencing Assay Targeting the Tomato Brown Rugose Fruit Virus (ToBRFV) Genome Reveals Widespread Distribution in Municipal Wastewater Treatment Systems in the Province of Ontario, Canada. Viruses 2024; 16:460. [PMID: 38543825 PMCID: PMC10974707 DOI: 10.3390/v16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly spread around the globe due to its ability to escape detection by antiviral host genes which confer resistance to other tobamoviruses in tomato plants. The development of robust and reproducible methods for detecting viruses in the environment aids in the tracking and reduction of pathogen transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5' and 3' ends. We demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources, including primer design, sequencing library prep, and read analysis. Additionally, we adapted our lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Isaac Ellmen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jennifer J. Knapp
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Ria Menon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Alyssa K. Overton
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Michael D. J. Lynch
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| | - Jozef I. Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (I.E.); (J.J.K.); (R.M.); (A.K.O.); (J.C.); (M.D.J.L.); (J.I.N.); (T.C.C.)
- Metagenom Bio Life Science Inc., Waterloo, ON N2L 5V4, Canada
| |
Collapse
|
4
|
Zhang K, Xiang W, Jia N, Yu M, Liu J, Xie Z. A portable microfluidic device for thermally controlled granular sample manipulation. LAB ON A CHIP 2024; 24:549-560. [PMID: 38168724 DOI: 10.1039/d3lc00888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Effective granular sample manipulation with a portable and visualizable microfluidic device is significant for lots of applications, such as point-of-care testing and cargo delivery. Herein, we report a portable microfluidic device for controlled particle focusing, migration and double-emulsion droplet release via thermal fields. The device mainly contains a microfluidic chip, a microcontroller with a DC voltage control unit, a built-in microscope with a video transmission unit and a smartphone. Five microheaters located at the bottom of the microfluidic chip are used to unevenly heat fluids and then induce thermal buoyancy flow and a thermocapillary effect, and the experiments can be conveniently visualized through a smartphone, which provides convenient sample detection in outdoor environments. To demonstrate the feasibility and multifunctionality of this device, the focusing manipulation of multiple particles is first analyzed by using silica particles and yeast cells as experimental samples. We can directly observe the particle focusing states on the screen of a smartphone, and the particle focusing efficiency can be flexibly tuned by changing the control voltage of the microheater. Then the study focus is transferred to single-particle migration. By changing the voltage combinations applied on four strip microheaters, the single particle can migrate at predetermined trajectory and speed, showing attractiveness for those applications needing sample transportation. Finally, we manipulate the special three-phase flow system of double-emulsion drops in thermal fields. Under the combined effect of the thermocapillary effect and increased instability, the shell of double-emulsion droplets gradually thins and finally breaks, resulting in the release of samples in inner cores. The core release speed can also be flexibly adjusted by changing the control voltage of the microheater. These three experiments successfully demonstrate the effectiveness and multifunctionality of this thermally actuated microfluidic device on granular manipulation. Therefore, this portable microfluidic device will be promising for lots of applications, such as analytical detection, microrobot actuation and cargo release.
Collapse
Affiliation(s)
- Kailiang Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Wei Xiang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Na Jia
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Mingyu Yu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Jiuqing Liu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Zhijie Xie
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| |
Collapse
|
5
|
Esmaeilzadeh F, Santosa AI, Çelik A, Koolivand D. Revealing an Iranian Isolate of Tomato Brown Rugose Fruit Virus: Complete Genome Analysis and Mechanical Transmission. Microorganisms 2023; 11:2434. [PMID: 37894095 PMCID: PMC10608917 DOI: 10.3390/microorganisms11102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
An analysis of the complete genome sequence of a novel isolate of tomato brown rugose fruit virus (ToBRFV) obtained from tomatoes in Iran and named ToBRFV-Ir is presented in this study. Comprehensive phylogenetic analysis utilizing key viral proteins, including 126 KDa, 183 KDa, movement protein (MP), and coat protein (CP), as well as the complete genome sequence, classified ToBRFV-Ir and 65 isolates from GenBank into three distinct clades. Notably, genetic diversity assessment revealed relatively low variability among the isolates, irrespective of their geographical or clade affiliation. Natural selection analysis based on the complete genome sequence showed that dN/dS values were consistently <1, indicating the prevailing role of negative selection across all populations. Analyses using the Recombination Detection Program and SplitsTree found no evidence of recombination events or signals in the complete genome sequence of the tested isolates. Thus, these results suggest that the genetic composition of ToBRFV remains stable without significant genetic exchange or recombination events occurring. A simple arithmetic comparison of the patristic distances and dates suggested that the time to the most recent common ancestor (TMRCA) of the ToBRFV populations is approximately 0.8 up to 2.7 with the closest tobamoviruses. An evolutionary study of the tested isolates from various countries based on the complete genome suggests Peruvian ancestry. The ToBRF-Ir isolate was successfully transmitted through mechanical inoculations to Solanum lycopersicum and Nicotiana rustica. These findings shed light on the genetic dynamics and transmission mechanisms of ToBRFV, providing valuable insights into its molecular characteristics and potential spread among susceptible plant species.
Collapse
Affiliation(s)
- Fereshteh Esmaeilzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran (D.K.)
| | - Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Turkey
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran (D.K.)
| |
Collapse
|
6
|
Salem NM, Jewehan A, Aranda MA, Fox A. Tomato Brown Rugose Fruit Virus Pandemic. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:137-164. [PMID: 37268006 DOI: 10.1146/annurev-phyto-021622-120703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed Tm resistance genes, as well as pepper plants harboring the L resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.
Collapse
Affiliation(s)
- Nida' M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan;
| | - Ahmad Jewehan
- Applied Plant Genomics Group, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Adrian Fox
- Fera Science, Sand Hutton, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Kimura K, Miyazaki A, Suzuki T, Yamamoto T, Kitazawa Y, Maejima K, Namba S, Yamaji Y. A Reverse-Transcription Loop-Mediated Isothermal Amplification Technique to Detect Tomato Mottle Mosaic Virus, an Emerging Tobamovirus. Viruses 2023; 15:1688. [PMID: 37632030 PMCID: PMC10459350 DOI: 10.3390/v15081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Tomato mottle mosaic virus (ToMMV) is an emerging seed-transmissible tobamovirus that infects tomato and pepper. Since the first report in 2013 in Mexico, ToMMV has spread worldwide, posing a serious threat to the production of both crops. To prevent the spread of this virus, early and accurate detection of infection is required. In this study, we developed a detection method for ToMMV based on reverse-transcription loop-mediated isothermal amplification (RT-LAMP). A LAMP primer set was designed to target the genomic region spanning the movement protein and coat protein genes, which is a highly conserved sequence unique to ToMMV. This RT-LAMP detection method achieved 10-fold higher sensitivity than conventional RT-polymerase chain reaction methods and obtained high specificity without false positives for closely related tobamoviruses or healthy tomato plants. This method can detect ToMMV within 30 min of direct sampling of an infected tomato leaf using a toothpick and therefore does not require RNA purification. Given its high sensitivity, specificity, simplicity, and rapidity, the RT-LAMP method developed in this study is expected to be valuable for point-of-care testing in field surveys and for large-scale testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Wani LA, Jawa P, Khan JA. Development of one step colorimetric RT-LAMP assays for rapid detection of Apple mosaic virus and Prunus necrotic ringspot virus. J Virol Methods 2023; 316:114729. [PMID: 37031745 DOI: 10.1016/j.jviromet.2023.114729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Apple mosaic virus (ApMV) and Prunus necrotic ringspot virus (PNRSV), belonging to genus Ilarvirus, cause significant losses to rose and other plants of the family Rosaceae. They are easily transmitted through mechanical or vegetative means. In our previous study, the occurrence of ApMV and PNRSV in rose plants was reported. In this study, as a first step towards the development of a colorimetric Reverse Transcriptase - Loop Mediated Isothermal Amplification (RT-LAMP) assay, two primer sets were designed, each containing six primers (F3, B3, FIP, BIP, LF and LB) targeting the coat protein genes of ApMV and PNRSV. After incubation of RT-LAMP reaction mix at an isothermal temperature (65 °C/30min), the amplified products were visually confirmed with the nucleic acid intercalation dye SYBR Green I and the indicator dye Hydroxy-Naphthol Blue. The developed assays were virus specific and showed no cross amplification. Their sensitivity was 103 times higher than that of the corresponding RT-PCRs. The LAMP assays developed in this study are inexpensive, rapid and reliable for the early detection of ApMV and PNRSV, and could therefore be used in plant quarantine to control the risk of their spread.
Collapse
Affiliation(s)
- Latief A Wani
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi - 110025, India
| | - Priyanka Jawa
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi - 110025, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi - 110025, India.
| |
Collapse
|
9
|
Ondruš M, Sýkorová V, Hocek M. Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates. Chem Commun (Camb) 2022; 58:11248-11251. [PMID: 36124894 DOI: 10.1039/d2cc03588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new alternative for enzymatic synthesis of single-stranded hypermodified oligodeoxyribonucleotides displaying four different hydrophobic groups based on reverse transcription from RNA templates catalyzed by DNA polymerases using a set of base-modified dNTPs followed by digestion of RNA by RNases. Using mixed oligodeoxyribonucleotide primers containing a ribonucleotide at the 3'-end, RNase AT1 simultaneously digested the template and cleaved off the primer to release a fully modified oligonucleotide that can be further 3'-labelled with a fluorescent nucleotide using TdT. The resulting hypermodified oligonucleotides could find applications in selection of aptamers or other functional macromolecules.
Collapse
Affiliation(s)
- Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic. .,Dept. of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic. .,Dept. of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
10
|
Pepper Plants Harboring L Resistance Alleles Showed Tolerance toward Manifestations of Tomato Brown Rugose Fruit Virus Disease. PLANTS 2022; 11:plants11182378. [PMID: 36145781 PMCID: PMC9506004 DOI: 10.3390/plants11182378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
The tobamovirus tomato brown rugose fruit virus (ToBRFV) infects tomato plants harboring the Tm-22 resistance allele, which corresponds with tobamoviruses’ avirulence (Avr) gene encoding the movement protein to activate a resistance-associated hypersensitive response (HR). ToBRFV has caused severe damage to tomato crops worldwide. Unlike tomato plants, pepper plants harboring the L resistance alleles, which correspond with the tobamovirus Avr gene encoding the coat protein, have shown HR manifestations upon ToBRFV infection. We have found that ToBRFV inoculation of a wide range of undefined pepper plant varieties could cause a “hypersensitive-like cell death” response, which was associated with ToBRFV transient systemic infection dissociated from disease symptom manifestations on fruits. Susceptibility of pepper plants harboring L1, L3, or L4 resistance alleles to ToBRFV infection following HRs was similarly transient and dissociated from disease symptom manifestations on fruits. Interestingly, ToBRFV stable infection of a pepper cultivar not harboring the L gene was also not associated with disease symptoms on fruits, although ToBRFV was localized in the seed epidermis, parenchyma, and endothelium, which borders the endosperm, indicating that a stable infection of maternal origin of these tissues occurred. Pepper plants with systemic ToBRFV infection could constitute an inoculum source for adjacently grown tomato plants.
Collapse
|
11
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
12
|
García-Estrada RS, Diaz-Lara A, Aguilar-Molina VH, Tovar-Pedraza JM. Viruses of Economic Impact on Tomato Crops in Mexico: From Diagnosis to Management-A Review. Viruses 2022; 14:1251. [PMID: 35746722 PMCID: PMC9228091 DOI: 10.3390/v14061251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tomato is the most economically important vegetable crop worldwide and the second most important for Mexico. However, viral diseases are among the main limiting factors that affect the productivity of this crop, causing total losses in some cases. This review provides key information and findings on the symptoms, distribution, transmission, detection, and management of diseases caused by viruses of major importance in tomato crops in Mexico. Currently, about 25 viruses belonging to nine different families have been reported infecting tomato in Mexico, but not all of them cause economically significant diseases. Viruses of economic importance include tomato brown rugose fruit virus (ToBRFV), tomato spotted wilt virus (TSWV), tomato yellow leaf curl virus (TYLCV), pepino mosaic virus (PepMV), and tomato marchitez virus (ToMarV). The topics discussed here will provide updated information about the status of these plant viruses in Mexico as well as diverse management strategies that can be implemented according to the specific circumstances of each viral pathosystem. Additionally, a list of tomato-affecting viruses not present in Mexico that are continuous threats to the crop health is included.
Collapse
Affiliation(s)
- Raymundo Saúl García-Estrada
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| | - Alfredo Diaz-Lara
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Vivian Hayde Aguilar-Molina
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| |
Collapse
|
13
|
Xie R, Gao J, Li H, Yu W, Zhang J, Wang N, Chen A. Rapid detection of Arothron species by real-time fluorescence and colorimetric loop-mediated isothermal amplification assays targeting the mitochondrial cytochrome b gene. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Vargas-Hernández BY, Ramírez-Pool JA, Núñez-Muñoz LA, Calderón-Pérez B, De La Torre-Almaráz R, Hinojosa-Moya J, Xoconostle-Cázares B, Ruiz-Medrano R. Development of a droplet digital polymerase chain reaction (ddPCR) assay for the detection of Tomato brown rugose fruit virus (ToBRFV) in tomato and pepper seeds. J Virol Methods 2022; 302:114466. [PMID: 35065084 DOI: 10.1016/j.jviromet.2022.114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
In the present study, a droplet digital PCR assay was developed for detection of Tomato brown rugose fruit virus, a new Tobamovirus of tomato and other solanaceous plants, which expands the diagnostic strategies for this pathogen. Candidate reference DNA material was also obtained to be employed as positive control in tomato and pepper samples. Recombinant plasmids encode for ToBRFV coat protein (CP-ToBRFV) gene and Solanum lycopersicum GAPDH fragments, and CP-ToBRFV and Capsicum annuum GAPDH. To our knowledge, this is the first report of ToBRFV detection in tomato and pepper seeds using ddPCR.
Collapse
Affiliation(s)
- Brenda Yazmín Vargas-Hernández
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Rodolfo De La Torre-Almaráz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Estado de México, Mexico
| | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, 75492, Puebla, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
16
|
Bernabé-Orts JM, Torre C, Méndez-López E, Hernando Y, Aranda MA. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021; 13:v13091680. [PMID: 34578261 PMCID: PMC8473139 DOI: 10.3390/v13091680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Covadonga Torre
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain;
| | - Yolanda Hernando
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain; (J.M.B.-O.); (C.T.); (Y.H.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain;
- Correspondence:
| |
Collapse
|
17
|
Bernabé-Orts JM, Torre C, Méndez-López E, Hernando Y, Aranda MA. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021; 13:v13091680. [PMID: 34578261 DOI: 10.1094/phytofr-08-21-0053-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 05/24/2023] Open
Abstract
Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Covadonga Torre
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L. Parque Científico de Murcia. Ctra. Madrid Km 388, Complejo Espinardo. Edificio R 2ª Planta, Espinardo, 30100 Murcia, Spain
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Edificio 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
18
|
Alon DM, Hak H, Bornstein M, Pines G, Spiegelman Z. Differential Detection of the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus (ToBRFV) Using CRISPR-Cas12a. PLANTS (BASEL, SWITZERLAND) 2021; 10:1256. [PMID: 34205558 PMCID: PMC8234260 DOI: 10.3390/plants10061256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15-30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.
Collapse
Affiliation(s)
- Dan Mark Alon
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Menachem Bornstein
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Gur Pines
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Ziv Spiegelman
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|