1
|
Qiao X, Kong X, Zhou H, Fan X, Yuan J, Zhang Y. Deciphering the inhibitory mechanisms of polystyrene microplastics on thermophilic methanogens from the insights of microbial metabolite profiling and metagenomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138054. [PMID: 40157184 DOI: 10.1016/j.jhazmat.2025.138054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Due to the utilization of food packaging bags, a substantial amount of polystyrene microplastics (PS MPs) are introduced into the food waste (FW) treatment system during the pre-treatment process, potentially impacting the subsequent biochemical treatment system. In order to investigate the mechanism by which PS MPs affect anaerobic methanogenesis metabolism in thermophilic condition, this study analyzed the characteristics of methanogenesis in thermophilic anaerobic digestion (AD) of FW under different concentrations of PS MPs (100 μm, 10-200 mg/L). The results revealed a negative correlation between PS MPs concentration and methane (CH4) yield from FW. When the concentration of PS MPs reached 200 mg/L, CH4 yield decreased by 47.8 %. Further mechanistic investigations revealed that while the presence of PS MPs at lower concentrations could alleviate its adverse impact on methanogenesis by enhancing EPS content, the accumulation of reactive oxygen species (ROS) persisted with increasing PS MPs concentration, thereby inhibiting the activities of key enzymes involved in solubilization and acidification metabolisms (e.g., acetate kinase and F420). Metagenomics analysis indicated that the presence of PS MPs down-regulate abundance of genes for quorum sensing and CH4 metabolism pathways. These findings not only unveil potential detrimental effects of PS MPs on AD systems but also provide novel insights into comprehending and controlling the impact of MPs pollution on environmental preservation and energy recovery processes.
Collapse
Affiliation(s)
- Xuejiao Qiao
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China; College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xin Kong
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Honglin Zhou
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xiaojun Fan
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jin Yuan
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| |
Collapse
|
2
|
Favale N, Costa S, Summa D, Sabbioni S, Mamolini E, Tamburini E, Scapoli C. Comparison of microbiome community structure and dynamics during anaerobic digestion of different renewable solid wastes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100383. [PMID: 40255248 PMCID: PMC12008556 DOI: 10.1016/j.crmicr.2025.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study analysed the effect of the different lignocellulose composition of two crop substrates on the structure and dynamics of bacterial communities during anaerobic digestion (AD) processes for biogas production. To this end, cereal grains and grape pomace biomasses were analysed in parallel in an experimental AD bench-scale system to define and compare their metagenomic profiles for different experimental time intervals. The bacterial community structure and dynamics during the AD process were detected and characterised using high-resolution whole metagenomic shotgun analyses. Statistical evaluation identified 15 strains as specific to two substrates. Some strains, like Clostridium isatidis, Methanothermobacter wolfeii, and Methanobacter sp. MB1 in cereal grains, and Acetomicrobium hydrogeniformans and Acetomicrobium thermoterrenum in grape pomace, were never before detected in biogas reactors. The presence of bacteria such as Acetomicrobium sp. and Petrimonas mucosa, which degrade lipids and protein-rich substrates, along with Methanosarcina sp. and Peptococcaceae bacterium 1109, which tolerate high hydrogen pressures and ammonia concentrations, suggests a complex syntrophic community in lignin-cellulose-enriched substrates. This finding could help develop new strategies for the production of a tailor-made microbial consortium to be inoculated from the beginning of the digestion process of specific lignocellulosic biomass.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Daniela Summa
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology – Section of Pathology and Applied Microbiology, University of Ferrara, Italy
| | - Elisabetta Mamolini
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| |
Collapse
|
3
|
Iltchenco J, Smiderle MD, Gaio J, Magrini FE, Paesi S. Metataxonomic characterization of the microbial present in the anaerobic digestion of turkey litter waste with the addition of two inocula: allochthonous and commercial. Int Microbiol 2025; 28:539-551. [PMID: 39039379 DOI: 10.1007/s10123-024-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Turkey litter waste is lignocellulosic waste that can be sustainably used as an energy source through anaerobic digestion (AD). The 16S ribosomal RNA technique helps to unravel microbial diversity and predominant metabolic pathways. The assays were performed in 600-mL-glass bottles with 400 mL volume, for 60 days at 37 °C. The study evaluated the physicochemical parameters, the composition of the microbiota, and the functional inference in AD of different concentrations of turkey litter (T) using two inocula: granular inoculum (S) and commercial inoculum (B). The highest accumulated methane production (633 mL CH4·L-1) was observed in the test containing 25.5 g VS·L-1 of turkey litter with the addition of the two inocula (T3BS). In tests without inoculum (T3) and with commercial inoculum (T3B), there was an accumulation of acids and consequent inhibition of methane production 239 mL CH4·L-1 and 389 mL CH4·L-1, respectively. Bacteroidota, Firmicutes, and Actinobacteria were the main phyla identified. The presence of archaea Methanobacterium, Methanocorpusculum, and Methanolinea highlighted the hydrogenotrophic metabolic pathway in T3BS. Functional prediction showed enzymes involved in three metabolic pathways in turkey litter biodigestion: acetotrophic, hydrogenotrophic, and methylotrophic methanogenesis. The predominant hydrogenotrophic pathway can be observed by analyzing the microbiota, archaea involved in this specific pathway, genes involved, and relative acid consumption for T3S and T3BS samples with higher methane production. Molecular tools help to understand the main groups of microorganisms and metabolic pathways involved in turkey litter AD, such as the use of different inocula, allowing the development of strategies for the sustainable disposal of turkey litter.
Collapse
Affiliation(s)
- Janaina Iltchenco
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil.
| | - Mariana Dalsoto Smiderle
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| |
Collapse
|
4
|
Zhao C, Khan A, Wei Z, Jinghong W, Fangzheng Z, Guinan S, Yanhua H, Dan W, Zongjun C, Weidong W. Metabolic pathway analysis of methane from methanol as substrate in microbial consortium. BIORESOURCE TECHNOLOGY 2024; 413:131517. [PMID: 39317265 DOI: 10.1016/j.biortech.2024.131517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Simplified anaerobic digestion (SAD) of substrates facilitates microbial methanogenic pathways. In this study, a methane-producing microbial consortium from cow dung was enriched to determine the metabolism and metabolic pathway in the SAD of methanol. The results showed that methanol as a sole substrate produced 167 mL of methane at 10 days significantly higher than 58 mL, 17.6 mL, and 4 mL generated when methanol was combined with sodium formate, sodium formate alone, or sodium acetate. The relative abundance of Methanobacterium, Candidatus_Methanomethylophilus, Methanomassiliicoccus, and Methanosarcina was increased by 5.96 %, 3.77 %, 2.85 %, and 0.14 % in the methanol substrate of AD, respectively. Macrogenome sequencing indicates that methanol wasconverted into Methyl-CoM in the presence of Methanosarcina, which combines with Coenzyme B to produce methane. This study revealed that methanol is converted into methane by a simple pathway.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Aman Khan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhang Wei
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Wang Jinghong
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Zhang Fangzheng
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shen Guinan
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Hong Yanhua
- Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Wei Dan
- Institute of Plant Nutrition and Resource Environment, Beijing Academy of Agriculture and Forestry, Beijing 100097, China
| | - Cui Zongjun
- College of Agriculture, China Agricultural University, Beijing 100094, China
| | - Wang Weidong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Agricultural Greening and Low Carbon in Northeast Plains, Ministry of Agriculture and Rural Affairs, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
5
|
Zhang N, Ci M, Jia J, Shen D, Hu L, Long Y. Reduced sulfur compound formation from a leachate-saturated zone under changing temperature conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:185-195. [PMID: 39208755 DOI: 10.1016/j.wasman.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In the leachate-saturation zone of landfills, sulfate reduction is influenced by temperature and electron donors. This study assessed sulfate reduction behaviors under varied electron donor conditions by establishing multiple temperature variation scenarios based on stable temperature fields within the leachate-saturation zone. The results showed that temperature variations altered the microbial community structure and significantly influenced the sulfate reduction process. A more pronounced effect was observed with a temperature difference of 30 °C compared to one of 10 °C. In addition, sulfate reduction was influenced by the presence of electron donors and acceptors. In the middle and low-temperature regions (35 °C and 25 °C), sulfate reduction reaction of acidic organic matter was more significant, while alcohol and saccharide organic substances were more effective in promoting sulfate reduction at high-temperature regions (55 °C). Notably, a 30 °C temperature difference within the leachate-saturation zone significantly altered the microbial community structure, which influenced the sulfate reduction behavior. In particular, Firmicutes and Synergistota played essential roles in mediating the variance in sulfate reduction efficiency with a 30 °C decrease and 30 °C increase, respectively. The results also revealed that temperature changes within landfills were influenced by leachate migration, therefore, controlling leachate recharge can help prevent secondary risks associated with sulfate reduction processes.
Collapse
Affiliation(s)
- Nan Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Jia Jia
- Zhejiang Huanneng Environment Technology Co., Ltd., Hangzhou 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lifang Hu
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
6
|
Bombardi L, Orlando M, Aulitto M, Fusco S. Thermophilic Hemicellulases Secreted by Microbial Consortia Selected from an Anaerobic Digester. Int J Mol Sci 2024; 25:9887. [PMID: 39337375 PMCID: PMC11432564 DOI: 10.3390/ijms25189887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles produce stable enzymes that retain activity under industrial conditions, presenting a promising approach for LCB conversion. This research focused on two microbial consortia (i.e., microbiomes) that were analyzed for enzyme production using a cheap medium, i.e., a mixture of spent mushroom substrate (SMS) and digestate. The secreted xylanolytic enzymes were characterized in terms of temperature and pH optima, thermal stability, and hydrolysis products from LCB-derived polysaccharides. These enzymes showed optimal activity aligning with common biorefinery conditions and outperformed a formulated enzyme mixture in thermostability tests in the digestate. Phylogenetic and genomic analyses highlighted the genetic diversity and metabolic potential of these microbiomes. Bacillus licheniformis was identified as a key species, with two distinct strains contributing to enzyme production. The presence of specific glycoside hydrolases involved in the cellulose and hemicellulose degradation underscores these consortia's capacity for efficient LCB conversion. These findings highlight the potential of thermophilic microbiomes, isolated from an industrial environment, as a robust source of robust enzymes, paving the way for more sustainable and cost-effective bioconversion processes in biofuel and biochemical production and other biotechnological applications.
Collapse
Affiliation(s)
- Luca Bombardi
- Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milano, Italy
| | - Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
7
|
Iltchenco J, Smiderle MD, Gaio J, Magrini FE, Paesi S. Metataxonomic Studies to Evaluate the Beneficial Effect of Enzymatic Pretreatment on the Anaerobic Digestion of Waste Generated in Turkey Farming. Curr Microbiol 2024; 81:255. [PMID: 38955830 DOI: 10.1007/s00284-024-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.
Collapse
Affiliation(s)
- Janaina Iltchenco
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Mariana Dalsoto Smiderle
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil.
| |
Collapse
|
8
|
Otto P, Puchol-Royo R, Ortega-Legarreta A, Tanner K, Tideman J, de Vries SJ, Pascual J, Porcar M, Latorre-Pérez A, Abendroth C. Multivariate comparison of taxonomic, chemical and operational data from 80 different full-scale anaerobic digester-related systems. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:84. [PMID: 38902807 PMCID: PMC11191226 DOI: 10.1186/s13068-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can contribute to a better understanding of these systems and provide starting points for bioengineering. The present study investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were thoroughly collected, analysed and correlated to identify the main drivers of AD processes. RESULTS The present study describes chemical and operational parameters for a broad spectrum of different AD systems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Proteiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosarcina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanoculleus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an acetoclastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust methane production units. CONCLUSIONS From 80 different AD systems, one of the most holistic data sets is provided. A very distinct formation of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference parameters.
Collapse
Affiliation(s)
- Pascal Otto
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany
| | - Roser Puchol-Royo
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Asier Ortega-Legarreta
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Kristie Tanner
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | | | | | - Javier Pascual
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, (University of Valencia - CSIC), Paterna, Spain
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Christian Abendroth
- Chair of Circular Economy, Brandenburgische Technische Universität Cottbus-Senftenberg, Lehrgebäude 4A R2.25, Siemens-Halske-Ring 8, 03046, Cottbus, Germany.
| |
Collapse
|
9
|
Luo W, Tian H, Tan W, Tan Q. Effect of hydrothermal-acid pretreatment on methane yield and microbial community in anaerobic digestion of rice straw. BIORESOURCE TECHNOLOGY 2024; 402:130765. [PMID: 38692372 DOI: 10.1016/j.biortech.2024.130765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Hydrothermal pretreatment has been proposed to enhance straw methane yield during anaerobic digestion recently. However, the combined effect of hydrothermal and organic acid pretreatment (HTOAP) needs further investigation. This study identified optimal pretreatment at 120 °C with 3 % acetic acid for 24 h by orthogonal design method. The HTOAP increased the reducing sugar content by destroying the lignocellulosic structure. A 79 % increment of methane production after HTOAP was observed compared to the untreated group. Microbial analysis showed that HTOAP enriched the relative abundance of lignocellulose-degraders, such as W5053, Thermanaerovibrio, Caldicoprobacter, as well as the syntrophic acetate oxidizing bacteria Syntrophaceticus. Moreover, Methanobacterium conducted hydrogenotrophic methanogenesis dominantly. Furthermore, the potential function analysis showed that HTOAP stimulated the expression of key enzymes in the hydrogenotrophic pathway, including carbon-monoxide dehydrogenase (EC 1.2.7.4) and coenzyme F420 hydrogenase (EC 1.12.98.1). This investigation illustrated the potential of HTOAP of rice straw to facilitate methane production.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailin Tian
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenxia Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Rui W, Zhong S, Li X, Tang X, Wang L, Yang J. Evaluating the Role of Postbiotics in the Modulation of Human Oral Microbiota: A Randomized Controlled Clinical Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10238-y. [PMID: 38502383 DOI: 10.1007/s12602-024-10238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
There is a lack of clinical data to support the effectiveness and safety of postbiotics in the modulation of human oral microbiota and oral health care. Here, volunteers were recruited and randomly assigned to two cohorts: a placebo group (n = 15) and a postbiotic group (n = 16). The placebo group used toothpaste that did not contain postbiotics, while the postbiotic group used toothpaste with postbiotics (3 × 1010 CFU inactivated Lactobacillus salivarius LS97, L. paracasei LC86, and L. acidophilus LA85). Saliva samples were collected at different time points and the immunoglobulin A (IgA) and short-chain fatty acid (SCFA) levels were determined, while the salivary microbiota was analyzed by 16S rRNA amplicon sequencing. The results showed that salivary IgA levels and acetic and propionic acid levels were notably higher in the postbiotic group (P < 0.05), accompanied by an increase in the level of alpha diversity of the salivary microbiota, and these indexes remained high 1 month after discontinuing the use of toothpaste with or without postbiotics. A notable decrease in the relative abundance of the unclassified_Enterobacteriaceae, Klebsiella, Escherichia, etc. in the postbiotic group was accompanied by a notable increase in Ruminofilibacter and Lactobacillus. However, both groups did not cause significant changes in the overall structure of the host salivary microbiota. In conclusion, postbiotics dramatically and consistently improved oral immunity levels and SCFA content in the host. In addition, postbiotics were able to increase the level of microbial alpha diversity and down-regulate the abundance of some harmful microbes without significantly altering the structure of the host salivary microbiota. Chinese Clinical Trial Registry (ChiCTR) ( www.chictr.org.cn ) under the registration number ChiCTR2300074088.
Collapse
Affiliation(s)
- Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xuna Tang
- Department of Endodontology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China.
| | - Lijun Wang
- Department of Endodontology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China.
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
11
|
Wang S, Su M, Hu X, Wang X, Han Q, Yu Q, Heděnec P, Li H. Gut diazotrophs in lagomorphs are associated with season but not altitude and host phylogeny. FEMS Microbiol Lett 2024; 371:fnad135. [PMID: 38124623 DOI: 10.1093/femsle/fnad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Invertebrates such as termites feeding on nutrient-poor substrate receive essential nitrogen by biological nitrogen fixation of gut diazotrophs. However, the diversity and composition of gut diazotrophs of vertebrates such as Plateau pikas living in nutrient-poor Qinghai-Tibet Plateau remain unknown. To fill this knowledge gap, we studied gut diazotrophs of Plateau pikas (Ochotona curzoniae) and its related species, Daurian pikas (Ochotona daurica), Hares (Lepus europaeus) and Rabbits (Oryctolagus cuniculus) by high-throughput amplicon sequencing methods. We analyzed whether the gut diazotrophs of Plateau pikas are affected by season, altitude, and species, and explored the relationship between gut diazotrophs and whole gut microbiomes. Our study showed that Firmicutes, Spirochaetes, and Euryarchaeota were the dominant gut diazotrophs of Plateau pikas. The beta diversity of gut diazotrophs of Plateau pikas was significantly different from the other three lagomorphs, but the alpha diversity did not show a significant difference among the four lagomorphs. The gut diazotrophs of Plateau pikas were the most similarly to that of Rabbits, followed by Daurian pikas and Hares, which was inconsistent with gut microbiomes or animal phylogeny. The dominant gut diazotrophs of the four lagomorphs may reflect their living environment and dietary habits. Season significantly affected the alpha diversity and abundance of dominant gut diazotrophs. Altitude had no significant effect on the gut diazotrophs of Plateau pikas. In addition, the congruence between gut microbiomes and gut diazotrophs was low. Our results proved that the gut of Plateau pikas was rich in gut diazotrophs, which is of great significance for the study of ecology and evolution of lagomorphs.
Collapse
Affiliation(s)
- Sijie Wang
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Ming Su
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, 143 Xiangzhang East Road, Changsha, Hunan Province 410014, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou, Gansu Province 730020, China
| | - Petr Heděnec
- Institute for Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Huan Li
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou, Gansu Province 730020, China
| |
Collapse
|
12
|
Qiu Y, Johnson Z, Gu X, Bohutskyi P, Chen S. Dairy manure acidogenic fermentation at hyperthermophilic temperature enabled superior activity of thermostable hydrolytic enzymes linked to the genus Caldicoprobacter. BIORESOURCE TECHNOLOGY 2024; 391:129978. [PMID: 37944622 DOI: 10.1016/j.biortech.2023.129978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
In this study, fermentation experiments were conducted under mesophilic, thermophilic, and hyperthermophilic conditions to investigate adaptation of microbial communities and its effect on extracellular enzyme activities toward degradation of cellulose, hemicellulose and proteins in dairy manure. Hyperthermophilic conditions transformed the microbiome structure and stimulated activity of extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes. Specifically, the activities of protease, cellulose 1,4-β-cellobiosidase, and β-glucosidase secreted by hyperthermophilic microbes were higher by 22%, 47% and 49% compared to those produced by mesophilic and thermophilic communities. Enhanced hydrolytic activity of hyperthermophilic microbes enabled improved feedstock solubilization and production of 39% and 22% more soluble COD than mesophilic and thermophilic microbes, respectively. Connections between hydrolytic function and microbial community structure at various temperatures were assessed using the PICRUSt2 computational tool. Genus Caldicoprobacter was identified as the primary candidate responsible for increased production of thermostable endo-1,4-β-glucanase, β-glucosidase and endo-1,4-β-xylanase, and enhanced hydrolytic performance of hyperthermophilic microbial community.
Collapse
Affiliation(s)
- Yaojing Qiu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States
| | - Zachary Johnson
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Xiangyu Gu
- State Key laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pavlo Bohutskyi
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States.
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States.
| |
Collapse
|
13
|
Thapa S, Zhou S, O'Hair J, Al Nasr K, Ropelewski A, Li H. Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC Biotechnol 2023; 23:51. [PMID: 38049781 PMCID: PMC10696843 DOI: 10.1186/s12896-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
- Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Joshua O'Hair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Kamal Al Nasr
- Department of Computer Sciences, College of Engineering, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Alexander Ropelewski
- Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA, 15213, USA
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA.
| |
Collapse
|
14
|
Poulsen JS, Macêdo WV, Bonde T, Nielsen JL. Energetically exploiting lignocellulose-rich residues in anaerobic digestion technologies: from bioreactors to proteogenomics. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:183. [PMID: 38017526 PMCID: PMC10685487 DOI: 10.1186/s13068-023-02432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The biogas produced through anaerobic digestion (AD) of renewable feedstocks is one of the promising alternatives to replace fossil-derived energy. Even though lignocellulosic biomass is the most abundant biomass on earth, only a small fraction is being used towards resources recovery, leaving a great potential unexploited. In this study, the combination of state-of-art genomic techniques and engineered systems were used to further advance the knowledge on biogas production from lignocellulosic-rich residues and the microbiome involved in the anaerobic digestion hereof. A long-term adapted anaerobic microbiome capable of degrading wheat straw as the sole substrate was investigated using protein stable isotope probing (protein-SIP). The results indicated that a diverse microbial community, primarily composed of Firmicutes and Methanogens, played crucial roles in cellulose degradation and methane production. Notably, Defluviitoga tunisiensis, Syntrophothermus lipocalidus, and Pelobacter carbinolicus were identified as direct metabolizers of cellulose, while Dehalobacterium assimilated labelled carbon through cross-feeding. This study provides direct evidence of primary cellulose degraders and sheds light on their genomic composition. By harnessing the potential of lignocellulosic biomass and understanding the microbial communities involved, we can promote sustainable biogas production, contributing to energy security and environmental preservation.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg E, Denmark
| | - Williane Vieira Macêdo
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg E, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej, 10 D, 8000, Aarhus C, Denmark
| | - Torben Bonde
- Biofuel Technology A/S, Bredkær Parkvej 58, 8250, Egå, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg E, Denmark.
| |
Collapse
|
15
|
Zhang L, Gao X, Li Y, Li G, Luo W, Xu Z. Optimization of free air space to regulate bacterial succession and functions for alleviating gaseous emissions during kitchen waste composting. BIORESOURCE TECHNOLOGY 2023; 387:129682. [PMID: 37586431 DOI: 10.1016/j.biortech.2023.129682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
This study investigated the effects of free air space (FAS) (45%, 55%, 65%) on bacterial dynamics for gaseous emissions during kitchen waste composting. Results show that FAS increase from 45% to 65% elevated oxygen diffusivity to inhibit bacteria for fermentation (e.g. Caldicoprobacter and Ruminofilibacter) to reduce methane emission by 51%. Moreover, the increased FAS accelerated heat loss to reduce temperature and the abundance of thermophiles (e.g. Thermobifida and Thermobacillus) for aerobic chemoheterotrophy to mitigate ammonia emission by 32%. Nevertheless, the reduced temperature induced the growth of Desulfitibacter and Desulfobulbus for sulfate/sulfite respiration to boost hydrogen sulphide emission. By contrast, FAS at 55% achieved the highest germination index and favored the proliferation of nitrifiers and denitrifiers (e.g. Roseiflexus and Steroidobacter) to improve nitrate availability, thus slightly enhancing nitrous oxide emission. Thus, FAS at 55% exhibits the optimal performance for gaseous emission reduction and maturity enhancement in kitchen waste composting.
Collapse
Affiliation(s)
- Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Hasaka S, Sakamoto S, Fujii K. The Potential of Digested Sludge-Assimilating Microflora for Biogas Production from Food Processing Wastes. Microorganisms 2023; 11:2321. [PMID: 37764166 PMCID: PMC10535770 DOI: 10.3390/microorganisms11092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Food processing wastes (FPWs) are residues generated in food manufacturing, and their composition varies depending on the type of food product being manufactured. Therefore, selecting and acclimatizing seed microflora during the initiation of biogas production is crucial for optimal outcomes. The present study examined the biogas production capabilities of digested sludge-assimilating and biogas-yielding soil (DABYS) and enteric (DABYE) microflorae when used as seed cultures for biogas production from FPWs. After subculturing and feeding these microbial seeds with various FPWs, we assessed their biogas-producing abilities. The subcultures produced biogas from many FPWs, except orange peel, suggesting that the heterogeneity of the bacterial members in the seed microflora facilitates quick adaptation to FPWs. Microflorae fed with animal-derived FPWs contained several methanogenic archaeal families and produced methane. In contrast, microflorae fed with vegetable-, fruit-, and crop-derived FPWs generated hydrogen, and methanogenic archaeal populations were diminished by repeated subculturing. The subcultured microflorae appear to hydrolyze carbohydrates and protein in FPWs using cellulase, pectinase, or protease. Despite needing enhancements in biogas yield for future industrial scale-up, the DABYS and DABYE microflorae demonstrate robust adaptability to various FPWs.
Collapse
Affiliation(s)
- Sato Hasaka
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Saki Sakamoto
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
- Applied Chemistry and Chemical Engineering Program, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| |
Collapse
|
17
|
Cheng J, Gao X, Yan Z, Li G, Luo W, Xu Z. Intermittent aeration to reduce gaseous emission and advance humification in food waste digestate composting: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 371:128644. [PMID: 36681346 DOI: 10.1016/j.biortech.2023.128644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the performance and mechanisms of intermittent aeration to regulate gaseous emission and humification during food waste digestate composting. In addition to continuous aeration, three intermittent aeration regimes were conducted with the on-off interval ratio at 3:1, 2:1, and 1:1 within each 30 min, respectively. Results showed that intermittent aeration regimes reduced gaseous emission and enhanced humification during composting. In particular, intermittent aeration with the on/off ratio of 1:1 was more effective to reduce organic mineralization than other regimes, which alleviated the emission of nitrous oxide and ammonia by 63.1% and 75.7% in comparison with continuous aeration, respectively. In addition, this aeration regime also enhanced the content of humic acid by 24.1%. Further analysis demonstrated that prolonging aeration-off intervals could enrich facultative bacteria (e.g. Atopobium and Clostridium) from digestate and inhibit the proliferation of several aerobic bacteria (e.g. Caldicoprobacter and Marinimicrobium) to retard organic mineralization for humification.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaowei Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
18
|
Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Cultures from Pachnoda marginata Larva Gut. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to partially mimic the efficient lignocellulose pretreatment process performed naturally in the gut system of Pachnoda marginata larvae, two wheat straw pretreatments were evaluated: a mechanical pretreatment via cutting the straw into two different sizes and an alkaline pretreatment with calcium hydroxide. After pretreatment, gut enrichment cultures on wheat straw at alkaline pH were inoculated and kept at mesophilic conditions over 45 days. The methanogenic community was composed mainly of the Methanomicrobiaceae and Methanosarcinaceae families. The combined pretreatment, size reduction and alkaline pretreatment, was the best condition for methane production. The positive effect of the straw pretreatment was higher in the midgut cultures, increasing the methane production by 192%, while for hindgut cultures the methane production increased only by 149% when compared to non-pretreated straw. Scanning electron microscopy (SEM) showed that the alkaline pretreatment modified the surface of the wheat straw fibers, which promoted biofilm formation and microbial growth. The enrichment cultures derived from larva gut microbiome were able to degrade larger 1 mm alkaline treated and smaller 250 µm but non-pretreated straw at the same efficiency. The combination of mechanical and alkaline pretreatments resulted in increased, yet not superimposed, methane yield.
Collapse
|
19
|
Oliva A, Tan LC, Papirio S, Esposito G, Lens PNL. Fed-batch anaerobic digestion of raw and pretreated hazelnut skin over long-term operation. BIORESOURCE TECHNOLOGY 2022; 357:127372. [PMID: 35623606 DOI: 10.1016/j.biortech.2022.127372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study provided important insights on the anaerobic digestion (AD) of hazelnut skin (HS) by operating a fed-batch AD reactor over 240 days and focusing on several factors impacting the process in the long term. An efficient reactor configuration was proposed to increase the substrate load while reducing the solid retention time during the fed-batch AD of HS. Raw HS produced maximally 19.29 mL CH4/g VSadd/d. Polyphenols accumulated in the reactor and the use of NaOH to adjust the pH likely inhibited AD. Maceration and methanol-organosolv pretreatments were, thus, used to remove polyphenols from HS (i.e. 82 and 97%, respectively) and improve HS biodegradation. Additionally, organosolv pretreatment removed 9% of the lignin. The organosolv-pretreated HS showed an increment in methane potential of 21%, while macerated HS produced less methane than the raw substrate, probably due to the loss of non-structural sugars during maceration.
Collapse
Affiliation(s)
- A Oliva
- Department of Microbiology and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland.
| | - L C Tan
- Department of Microbiology and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - S Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - G Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - P N L Lens
- Department of Microbiology and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
20
|
Laguillaumie L, Rafrafi Y, Moya-Leclair E, Delagnes D, Dubos S, Spérandio M, Paul E, Dumas C. Stability of ex situ biological methanation of H 2/CO 2 with a mixed microbial culture in a pilot scale bubble column reactor. BIORESOURCE TECHNOLOGY 2022; 354:127180. [PMID: 35439560 DOI: 10.1016/j.biortech.2022.127180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Biological methanation is a promising technology for gas and carbon valorisation. Therefore, process stability is required to allow its scale up and development. A pilot scale bubble column reactor was used for ex situ biological methanation with Mixed Microbial Culture (MMC). A 16S rRNA high throughput sequencing analysis revealed the MMC reached a stable composition with 50-60% Methanobacterium in closed liquid mode, a robust genus adapted to large scale constraints. Class MBA03 was identified as an indicator of process stability. Methanogenic genera moved toward 50% of Methanothermobacter when intensifying the process, and proteolytic activity was identified while 94% of H2/CO2 was converted into methane at 4NL.L-1.d-1. This study gives clarifications on the origin of volatile fatty acids (VFA) apparitions. Acetate and propionate accumulated when methanogenic activity weakened due to nutritive deficiency, and when PH2 reached 0.7 bar. The MMC withstood a storage period of 34d at room temperature indicating its suitability for industrial constraints.
Collapse
Affiliation(s)
- Léa Laguillaumie
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Yan Rafrafi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - Simon Dubos
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Etienne Paul
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Claire Dumas
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
21
|
Alex Kibangou V, Lilly M, Busani Mpofu A, de Jonge N, Oyekola OO, Jean Welz P. Sulfate-reducing and methanogenic microbial community responses during anaerobic digestion of tannery effluent. BIORESOURCE TECHNOLOGY 2022; 347:126308. [PMID: 34767906 DOI: 10.1016/j.biortech.2021.126308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities were monitored in terms of structure, function and response to physicochemical variables during anaerobic digestion of tannery and associated slaughterhouse effluent in: (i) 2 L biochemical methane potential batch reactors at different inoculum to substrate ratios (2-5) and initial sulfate concentrations (665-2000 mg/L), and (ii) 20 L anaerobic sequencing batch reactors with different mixing regimes (continuous vs. intermittent). Methanogenic and sulfidogenic community compositions in the 2 L reactors evolved initially, but stabilised after the start of biogas generation, although significant (ANOSIM p < 0.05) changes in the physicochemical parameters indicated continued metabolic activity. Both hydrogenotrophic and acetoclastic archaeal genera were present in high relative abundances. Continuous stirring preferentially selected the metabolically versatile genus Methanosarcina, suggesting that higher specific methane generation in the continuously stirred system (168 vs. 19.5 mL methane per gram volatile solids per week) was related to the metabolic activities of members of this genus.
Collapse
Affiliation(s)
- Victoria Alex Kibangou
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Mariska Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Ashton Busani Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark; NIRAS A/S, Østre Havnegade 12, Aalborg DK-9000, Denmark
| | - Oluwaseun O Oyekola
- Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Pamela Jean Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa.
| |
Collapse
|