1
|
Viana GGF, Cardozo MV, Pereira JG, Rossi GAM. Antimicrobial Resistant Staphylococcus spp., Escherichia coli, and Salmonella spp. in Food Handlers: A Global Review of Persistence, Transmission, and Mitigation Challenges. Pathogens 2025; 14:496. [PMID: 40430816 PMCID: PMC12114568 DOI: 10.3390/pathogens14050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Antimicrobial resistance in foodborne pathogens represents a critical global health challenge, with food handlers serving as key contributors in their transmission. This comprehensive review synthesizes evidence on the prevalence, transmission dynamics, and antimicrobial resistance patterns of three major pathogens, Staphylococcus spp., Escherichia coli, and Salmonella spp., among food handlers worldwide. Analysis of studies across diverse geographical regions reveals considerable variation in colonization rates, with Staphylococcus spp. prevalence ranging from 19.5% to 95.0%, Escherichia coli from 2.8% to 89.3%, and Salmonella spp. from 0.07% to 9.1%. Resistance profiles demonstrate alarming trends, including widespread β-lactam resistance and emerging resistance to last-resort antibiotics like carbapenems. Particularly concerning is the high occurrence of multidrug resistant (MDR) strains and extended spectrum β-lactamase (ESBL) producers in low- and middle-income countries. This review identified inadequate handwashing, poor hygiene infrastructure, and asymptomatic carriage as critical factors facilitating the transmission of antimicrobial resistant strains. These findings underscore the urgent need for enhanced surveillance systems, targeted decolonization strategies, improved hygiene protocols, and food handler education to mitigate the spread of resistant pathogens through the food chain.
Collapse
Affiliation(s)
- Gustavo Guimarães Fernandes Viana
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (G.G.F.V.); (J.G.P.)
| | - Marita Vedovelli Cardozo
- Department of Pathology, Reproduction and One Health, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil;
| | - Juliano Gonçalves Pereira
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (G.G.F.V.); (J.G.P.)
| | - Gabriel Augusto Marques Rossi
- Department of Veterinary Medicine, University Vila Velha (UVV), Av. Comissário José Dantas de Melo, n.21, Vila Velha 29102-920, ES, Brazil
| |
Collapse
|
2
|
He T, Ding Y, Sun Y, Li T. Advances in sRNA-mediated regulation of Salmonella infection in the host. Front Cell Infect Microbiol 2025; 15:1503337. [PMID: 40444151 PMCID: PMC12119635 DOI: 10.3389/fcimb.2025.1503337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
Salmonella is a foodborne pathogen that enters the host's body through contaminated food and water, leading to gastroenteritis and systemic diseases. It is a significant veterinary and human pathogen capable of infecting both humans and animals, with substantial impacts on public health, human well-being, and the economic development of the livestock and poultry farming industry. Small non-coding RNAs (sRNAs), typically 50-500 nucleotides (nt) in length, have been identified in various bacteria, including Escherichia coli, Brucella, Pseudomonas aeruginosa, and Salmonella. These sRNAs play crucial roles in regulating diverse physiological processes within bacteria. This review emphasizes recent advances in understanding how sRNAs regulate the virulence of Salmonella spp, such as the discovery of novel sRNAs like SaaS and new regulatory mechanisms of known sRNAs like RyhB-1/RyhB-2 and SdsR/Spot 42. It also outlines critical future directions, including exploring the multifaceted functions of sRNAs in lifestyle or infection phase transitions, fully elucidating their roles in regulating the host immune response, studying the combined actions of multiple sRNAs on host pathogenesis and expanding research to more Salmonella serotypes and diverse animal models. Through these efforts, this review aims to enhance our understanding of Salmonella sRNAs and their infection mechanisms.
Collapse
Affiliation(s)
| | | | | | - Tiansen Li
- School of Tropical Agriculture and Forestry, Hainan University,
Haikou, China
| |
Collapse
|
3
|
Chu L, Wang W, Xie L, Chen B, Lian Y, Jiang Y. Protective effects of carboxymethyl chitosan-dialdehyde glucan/polydopamine carrier-delivered Bacillus subtilis on the intestinal tract of mice infected with Salmonella. Int J Biol Macromol 2025; 310:143316. [PMID: 40258552 DOI: 10.1016/j.ijbiomac.2025.143316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
This study investigated the protective effects of carboxymethyl chitosan-dialdehyde glucan/polydopamine carrier-delivered Bacillus subtilis (PBS) on Salmonella-induced intestinal inflammation in mice. The results indicated that PBS significantly lowered the organ index and inflammatory factor levels while increasing the levels of oxidase in mice. Interestingly, after PBS intervention, the mRNA expression levels of mucin, tight junction proteins, immune proteins, and transcription factors that constitute the intestinal barrier in mice exhibited a significant increase compared to those in the model group. The intestinal flora results showed that PBS improved the abundance of Ruminococcus, Bacillus, and Roseburia, simultaneously increasing the content of short-chain fatty acids. Furthermore, the downstream protein expression of pathway genes confirmed that PBS inhibited the inflammatory response by regulating the TLR4-NF-κB-NLRP3 inflammasome signaling pathway. These results indicate that carrier protection for Bacillus subtilis can enhance its relief effect on mice infected with Salmonella.
Collapse
Affiliation(s)
- Lulu Chu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenjie Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Luyu Xie
- Institute of Dataspace, Hefei Comprehensive National Science Center, Hefei 230000, China
| | - Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiyang Lian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Kitchens SR, Wang C, Price SB. Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review. Microorganisms 2024; 12:2249. [PMID: 39597638 PMCID: PMC11596670 DOI: 10.3390/microorganisms12112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by Illumina, have been instrumental in generating draft genomes that facilitate serotyping and the detection of antimicrobial resistance. Long-read sequencing technologies, including those from Pacific Biosciences and Oxford Nanopore Technologies, offer the potential for more complete genome assemblies and better insights into genetic diversity. In addition to these sequencing approaches, machine learning techniques like decision trees and random forests provide powerful tools for pattern recognition and predictive modeling. Importantly, the study of bacteriophages, which interact with Salmonella, offers additional layers of understanding. Phages can impact Salmonella population dynamics and evolution, and their integration into Salmonella genomics research holds promise for novel insights into pathogen control and epidemiology. This review revisits the history of Salmonella and its pathogenesis and highlights the integration of these modern methodologies in advancing our understanding of Salmonella.
Collapse
Affiliation(s)
| | | | - Stuart B. Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA; (S.R.K.); (C.W.)
| |
Collapse
|
6
|
Punchihewage-Don AJ, Ranaweera PN, Parveen S. Defense mechanisms of Salmonella against antibiotics: a review. FRONTIERS IN ANTIBIOTICS 2024; 3:1448796. [PMID: 39816264 PMCID: PMC11731628 DOI: 10.3389/frabi.2024.1448796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 01/18/2025]
Abstract
Salmonella is a foodborne pathogenic bacterium that causes salmonellosis worldwide. Also, Salmonella is considered a serious problem for food safety and public health. Several antimicrobial classes including aminoglycosides, tetracyclines, phenols, and β-Lactams are used to treat Salmonella infections. Antibiotics have been prescribed for decades to treat infections caused by bacteria in human and animal healthcare. However, intensive use of antibiotics resulted in antibiotic resistance (AR) among several foodborne bacteria including Salmonella. Furthermore, multi-drug resistance (MDR) of Salmonella has increased dramatically. In addition to MDR Salmonella, extensively drug resistant (XDR) as well as pan drug resistant (PDR) Salmonella were reported globally. Therefore, increasing AR is becoming a serious universal public health crisis. Salmonella developed many mechanisms to ensure its survival against antimicrobials. The most prominent defense mechanisms against these antibiotics include enzymatic inactivation, expelling drugs from the cell through efflux pumps, altering the structure of drugs, and changing or protecting the targets of drugs. Additionally, the formation of biofilms and plasmid-mediated AR by Salmonella, enhancing its resistance to various antibiotics, making it a challenging pathogen in both healthcare and food industry settings. This review focuses exclusively on providing a detailed overview of the mechanisms of AR in Salmonella.
Collapse
Affiliation(s)
| | | | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
7
|
Chand Y, Jain T, Singh S. Unveiling a Comprehensive Multi-epitope Subunit Vaccine Strategy Against Salmonella subsp. enterica: Bridging Core, Subtractive Proteomics, and Immunoinformatics. Cell Biochem Biophys 2024; 82:2901-2936. [PMID: 39018007 DOI: 10.1007/s12013-024-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Salmonella subsp. enterica (SE) presents a significant global health challenge in both developed and developing countries. Current SE vaccines have limitations, targeting specific strains and demonstrating moderate efficacy in adults, while also being unsuitable for young children and often unaffordable in regions with lower income levels where the disease is prevalent. To address these challenges, this study employed a computational approach integrating core proteomics, subtractive proteomics, and immunoinformatics to develop a universal SE vaccine and identify potential drug targets. Analysis of the core proteome of 185 SE strains revealed 1964 conserved proteins. Subtractive proteomics identified 9 proteins as potential vaccine candidates and 41 as novel drug targets. Using reverse vaccinology-based immunoinformatics, four multi-epitope-based subunit vaccine constructs (MESVCs) were designed, aiming to stimulate cytotoxic T lymphocyte, helper T lymphocyte, and linear B lymphocyte responses. These constructs underwent comprehensive evaluations for antigenicity, immunogenicity, toxicity, hydropathicity, and physicochemical properties. Predictive modeling, refinement, and validation were conducted to determine the secondary and tertiary structures of the SE-MESVCs, followed by docking studies with MHC-I, MHC-II, and TLR4 receptors. Molecular docking assessments showed favorable binding with all three receptors, with SE-MESVC-4 exhibiting the most promising binding energy. Molecular dynamics simulations confirmed the binding affinity and stability of SE-MESVC-4 with the TLR4/MD2 complex. Additionally, codon optimization and in silico cloning verified the efficient translation and successful expression of SE-MESVC-4 in Escherichia coli (E. coli) str. K12. Subsequent in silico immune simulation evaluated the efficacy of SE-MESVC-4 in triggering an effective immune response. These results suggest that SE-MESVC-4 may induce both humoral and cellular immune responses, making it a potential candidate for an effective SE vaccine. However, further experimental investigations are necessary to validate the immunogenicity and efficacy of SE-MESVC-4, bringing us closer to effectively combating SE infections.
Collapse
Affiliation(s)
- Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Tanvi Jain
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy and Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
8
|
Liu X, Liu Y, Zhao X, Li X, Yao T, Liu R, Wang Q, Wang Q, Li D, Chen X, Liu B, Feng L. Salmonella enterica serovar Typhimurium remodels mitochondrial dynamics of macrophages via the T3SS effector SipA to promote intracellular proliferation. Gut Microbes 2024; 16:2316932. [PMID: 38356294 PMCID: PMC10877990 DOI: 10.1080/19490976.2024.2316932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.
Collapse
Affiliation(s)
- Xingmei Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xueping Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Ting Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Qiushi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xintong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University Shenzhen, Shenzhen, China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Hoppe-Elsholz G, Piña-Iturbe A, Vallejos OP, Suazo ID, Sepúlveda-Alfaro J, Pereira-Sánchez P, Martínez-Balboa Y, Catalán EA, Reyes P, Scaff V, Bassi F, Campos-Gajardo S, Avilés A, Santiviago CA, Kalergis AM, Bueno SM. SEN1990 is a predicted winged helix-turn-helix protein involved in the pathogenicity of Salmonella enterica serovar Enteritidis and the expression of the gene oafB in the SPI-17. Front Microbiol 2023; 14:1236458. [PMID: 38029095 PMCID: PMC10655114 DOI: 10.3389/fmicb.2023.1236458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Excisable genomic islands (EGIs) are horizontally acquired genetic elements that harbor an array of genes with diverse functions. ROD21 is an EGI found integrated in the chromosome of Salmonella enterica serovar Enteritidis (Salmonella ser. Enteritidis). While this island is known to be involved in the capacity of Salmonella ser. Enteritidis to cross the epithelial barrier and colonize sterile organs, the role of most ROD21 genes remains unknown, and thus, the identification of their function is fundamental to understanding the impact of this EGI on bacterium pathogenicity. Therefore, in this study, we used a bioinformatical approach to evaluate the function of ROD21-encoded genes and delve into the characterization of SEN1990, a gene encoding a putative DNA-binding protein. We characterized the predicted structure of SEN1990, finding that this protein contains a three-stranded winged helix-turn-helix (wHTH) DNA-binding domain. Additionally, we identified homologs of SEN1990 among other members of the EARL EGIs. Furthermore, we deleted SEN1990 in Salmonella ser. Enteritidis, finding no differences in the replication or maintenance of the excised ROD21, contrary to what the previous Refseq annotation of the protein suggests. High-throughput RNA sequencing was carried out to evaluate the effect of the absence of SEN1990 on the bacterium's global transcription. We found a downregulated expression of oafB, an SPI-17-encoded acetyltransferase involved in O-antigen modification, which was restored when the deletion mutant was complemented ectopically. Additionally, we found that strains lacking SEN1990 had a reduced capacity to colonize sterile organs in mice. Our findings suggest that SEN1990 encodes a wHTH domain-containing protein that modulates the transcription of oafB from the SPI-17, implying a crosstalk between these pathogenicity islands and a possible new role of ROD21 in the pathogenesis of Salmonella ser. Enteritidis.
Collapse
Affiliation(s)
- Guillermo Hoppe-Elsholz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira-Sánchez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yohana Martínez-Balboa
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Reyes
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Scaff
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Franco Bassi
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sofia Campos-Gajardo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Avilés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Guzmán-Mejía F, Godínez-Victoria M, Molotla-Torres DE, Drago-Serrano ME. Lactoferrin as a Component of Pharmaceutical Preparations: An Experimental Focus. Pharmaceuticals (Basel) 2023; 16:214. [PMID: 37259362 PMCID: PMC9961256 DOI: 10.3390/ph16020214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 10/29/2023] Open
Abstract
Lactoferrin is an 80 kDa monomeric glycoprotein that exhibits multitask activities. Lactoferrin properties are of interest in the pharmaceutical field for the design of products with therapeutic potential, including nanoparticles and liposomes, among many others. In antimicrobial preparations, lactoferrin has been included either as a main bioactive component or as an enhancer of the activity and potency of first-line antibiotics. In some proposals based on nanoparticles, lactoferrin has been included in delivery systems to transport and protect drugs from enzymatic degradation in the intestine, favoring the bioavailability for the treatment of inflammatory bowel disease and colon cancer. Moreover, nanoparticles loaded with lactoferrin have been formulated as delivery systems to transport drugs for neurodegenerative diseases, which cannot cross the blood-brain barrier to enter the central nervous system. This manuscript is focused on pharmaceutical products either containing lactoferrin as the bioactive component or formulated with lactoferrin as the carrier considering its interaction with receptors expressed in tissues as targets of drugs delivered via parenteral or mucosal administration. We hope that this manuscript provides insights about the therapeutic possibilities of pharmaceutical Lf preparations with a sustainable approach that contributes to decreasing the resistance of antimicrobials and enhancing the bioavailability of first-line drugs for intestinal chronic inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabiola Guzmán-Mejía
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico
| | - Daniel Efrain Molotla-Torres
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| | - Maria Elisa Drago-Serrano
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| |
Collapse
|
11
|
Effects of Lactobacillus fermentum Administration on Intestinal Morphometry and Antibody Serum Levels in Salmonella-Infantis-Challenged Chickens. Microorganisms 2023; 11:microorganisms11020256. [PMID: 36838221 PMCID: PMC9963312 DOI: 10.3390/microorganisms11020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
There are no studies reporting the effects of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) on intestinal architecture and immunoglobulin serum levels in chickens. Here, we measured these parameters and hypothesized whether probiotic administration could modulate the observed outcomes. Two-hundred 1-day-old COBB 500 male chicks were allocated into four groups: (I) the control, (II) the group treated with L. fermentum, (III) the group exposed to S. Infantis, and (IV) the group inoculated with both bacteria. At 11 days post infection, blood was gathered from animals which were then euthanized, and samples from the small intestine were collected. Intestinal conditions, as well as IgA and IgM serum levels, were assessed. S. Infantis reduced villus-height-to-crypt-depth (VH:CD) ratios in duodenal, jejunal, and ileal sections compared to control conditions, although no differences were found regarding the number of goblet cells, muc-2 expression, and immunoglobulin concentration. L. fermentum improved intestinal measurements compared to the control; this effect was also evidenced in birds infected with S. Infantis. IgM serum levels augmented in response to the probiotic in infected animals. Certainly, the application of L. fermentum elicited positive outcomes in S. Infantis-challenged chickens and thus must be considered for developing novel treatments designed to reduce unwanted infections.
Collapse
|
12
|
Ali S, Alsayeqh AF. Review of major meat-borne zoonotic bacterial pathogens. Front Public Health 2022; 10:1045599. [PMID: 36589940 PMCID: PMC9799061 DOI: 10.3389/fpubh.2022.1045599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/16/2022] Open
Abstract
The importance of meat-borne pathogens to global disease transmission and food safety is significant for public health. These pathogens, which can cause a variety of diseases, include bacteria, viruses, fungi, and parasites. The consumption of pathogen-contaminated meat or meat products causes a variety of diseases, including gastrointestinal ailments. Humans are susceptible to several diseases caused by zoonotic bacterial pathogens transmitted through meat consumption, most of which damage the digestive system. These illnesses are widespread worldwide, with the majority of the burden borne by developing countries. Various production, processing, transportation, and food preparation stages can expose meat and meat products to bacterial infections and/or toxins. Worldwide, bacterial meat-borne diseases are caused by strains of Escherichia coli, Salmonella, Listeria monocytogenes, Shigella, Campylobacter, Brucella, Mycobacterium bovis, and toxins produced by Staphylococcus aureus, Clostridium species, and Bacillus cereus. Additionally, consuming contaminated meat or meat products with drug-resistant bacteria is a severe public health hazard. Controlling zoonotic bacterial pathogens demands intervention at the interface between humans, animals, and their environments. This review aimed to highlight the significance of meat-borne bacterial zoonotic pathogens while adhering to the One Health approach for creating efficient control measures.
Collapse
Affiliation(s)
- Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
13
|
A PMAxxTM qPCR Assay Reveals That Dietary Administration of the Microalgae Tetraselmis chuii Does Not Affect Salmonella Infantis Caecal Content in Early-Treated Broiler Chickens. Vet Sci 2022; 9:vetsci9090487. [PMID: 36136705 PMCID: PMC9503589 DOI: 10.3390/vetsci9090487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica serovars cause infections in humans. S. enterica subsp. enterica serovar Infantis is considered relevant and is commonly reported in poultry products. Evaluating innovative approaches for resisting colonization in animals could contribute to the goal of reducing potential human infections. Microalgae represent a source of molecules associated with performance and health improvement in chickens. Tetraselmis chuii synthesizes fermentable polysaccharides as part of their cell wall content; these sugars are known for influencing caecal bacterial diversity. We hypothesized if its dietary administration could exert a positive effect on caecal microbiota in favor of a reduced S. Infantis load. A total of 72 one-day-old broiler chickens (COBB 500) were randomly allocated into three groups: a control, a group infected with bacteria (day 4), and a group challenged with S. Infantis but fed a microalgae-based diet. Caecal samples (n = 8) were collected two days post-infection. A PMAxxTM-based qPCR approach was developed to assess differences regarding bacterial viable load between groups. The inclusion of the microalga did not modify S. Infantis content, although the assay proved to be efficient, sensitive, and repeatable. The utilized scheme could serve as a foundation for developing novel PCR-based methodologies for estimating Salmonella colonization.
Collapse
|
14
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|