1
|
Rice AM, Troendle EP, Bridgett SJ, Firoozi Nejad B, McKinley JM, Bradley DT, Fairley DJ, Bamford CGG, Skvortsov T, Simpson DA. SARS-CoV-2 introductions to the island of Ireland: a phylogenetic and geospatiotemporal study of infection dynamics. Genome Med 2024; 16:150. [PMID: 39702217 DOI: 10.1186/s13073-024-01409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Ireland's COVID-19 response combined extensive SARS-CoV-2 testing to estimate incidence, with whole genome sequencing (WGS) for genome surveillance. As an island with two political jurisdictions-Northern Ireland (NI) and Republic of Ireland (RoI)-and access to detailed passenger travel data, Ireland provides a unique setting to study virus introductions and evaluate public health measures. Using a substantial Irish genomic dataset alongside global data from GISAID, this study aimed to trace the introduction and spread of SARS-CoV-2 across the island. METHODS We recursively searched for 29,518 SARS-CoV-2 genome sequences collected in Ireland from March 2020 to June 2022 within the global SARS-CoV-2 phylogenetic tree and identified clusters based on shared last common non-Irish ancestors. A maximum parsimony approach was used to assign a likely country of origin to each cluster. The geographic locations and collection dates of the samples in each introduction cluster were used to map the spread of the virus across Ireland. Downsampling was used to model the impact of varying levels of sequencing and normalisation for population permitted comparison between jurisdictions. RESULTS Six periods spanning the early introductions and the emergence of Alpha, Delta, and Omicron variants were studied in detail. Among 4439 SARS-CoV-2 introductions to Ireland, 2535 originated in England, with additional cases largely from the rest of Great Britain, United States of America, and Northwestern Europe. Introduction clusters ranged in size from a single to thousands of cases. Introductions were concentrated in the densely populated Dublin and Belfast areas, with many clusters spreading islandwide. Genetic phylogeny was able to effectively trace localised transmission patterns. Introduction rates were similar in NI and RoI for most variants, except for Delta, which was more frequently introduced to NI. CONCLUSIONS Tracking individual introduction events enables detailed modelling of virus spread patterns and clearer assessment of the effectiveness of control measures. Stricter travel restrictions in RoI likely reduced Delta introductions but not infection rates, which were similar across jurisdictions. Local and global sequencing levels influence the information available from phylogenomic analyses and we describe an approach to assess the ability of a chosen WGS level to detect virus introductions.
Collapse
Affiliation(s)
- Alan M Rice
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
- Current address: UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, D04 E1W1, Ireland
| | - Evan P Troendle
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Stephen J Bridgett
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Behnam Firoozi Nejad
- Geography, School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Jennifer M McKinley
- Geography, School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Declan T Bradley
- Public Health Agency, Belfast, Northern Ireland, BT2 8BS, UK
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT12 6BA, UK
| | - Derek J Fairley
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast, Northern Ireland, BT12 6BA, UK
| | - Connor G G Bamford
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 5DL, UK
| | - Timofey Skvortsov
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| | - David A Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
2
|
Rahotă DM, Țîrț DP, Daina LG, Daina CM, Ilea CDN. Using Potential Years of Life Lost (PYLL) to Compare Premature Mortality between Romanian Counties to Confirmed COVID-19 Cases in 2020 and 2021. Healthcare (Basel) 2024; 12:1189. [PMID: 38921302 PMCID: PMC11204172 DOI: 10.3390/healthcare12121189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
This article examines the impact of the COVID-19 pandemic on potential years of life lost (PYLL) in Romania's counties in 2020 and 2021. PYLL highlights the burden of premature deaths in a community and is a useful tool for prioritizing community health issues. The study compares the PYLL variation between different counties, identifying disparities in premature mortality rates and highlighting areas that require specific public health interventions. The results indicate that COVID-19 has had a significant impact on potential years of life lost across the country. For the year 2020, the total number of deaths from confirmed COVID-19 cases was 19,455, of which 14,152 premature deaths caused 193,489 PYLL, with a crude rate of 1053.28 PYLL per 100,000 inhabitants. In 2021, there were 39,966 deaths from confirmed COVID-19 cases, with 28,777 premature deaths, 386,061 PYLL, and a crude rate of 2116.63 PYLL per 100,000 population. This study reveals significant variations only in some counties, based on BYLL rates, and in the two years analyzed. The proportion of premature deaths (<80 years) varied by county and gender. PYLL's analysis by gender shows that men experienced a higher number of premature deaths than women in most counties, and this trend persisted in both years. The results are presented in the form of thematic maps, highlighting standardized PYLL rates for both genders in each county, facilitating a visual understanding of regional disparities. The identified variations can serve as a basis for developing and implementing more effective public health policies, based on the specifics of each county.
Collapse
Affiliation(s)
- Diana Maria Rahotă
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania
| | - Dorel Petru Țîrț
- Psycho-Neurosciences and Recovery Department, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania
| | - Lucia Georgeta Daina
- Psycho-Neurosciences and Recovery Department, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania
| | - Cristian Marius Daina
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania
| | - Codrin Dan Nicolae Ilea
- Statistics Department, Bihor County Emergency Clinical Hospital, 67 Gheorghe Doja Street, 410169 Oradea, Romania
| |
Collapse
|
3
|
Moeenian M, Ghazinoory S, Yaghmaie P. Analysing the performance of a health innovation ecosystem in the COVID-19 crisis: complexity and chaos theory perspective. Health Res Policy Syst 2024; 22:59. [PMID: 38773524 PMCID: PMC11106938 DOI: 10.1186/s12961-024-01136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND This research delves into the complexity management of collaborative networks and interorganizational systems in the health innovation ecosystem on the basis of a best practice in the coronavirus disease 2019 (COVID-19) crisis. The objective is to offer specific solutions and guidelines to stakeholders in the health innovation ecosystem to control the chaos resulting from unexpected events along the ecosystem development and evolution path. METHODS For this purpose, the performance of the Health Innovation Ecosystem in Iran (the Every Home is a Health Base plan) has been examined through a detailed and in-depth analysis of events and actions taken using documents, reports and interviews with experts. The practical application of chaos and complex adaptive system features (adaptation, time horizons, edge of chaos, sensitivity to initial conditions, state space and strange attractors) is introduced to identify and manage the transition from a state where the health innovation ecosystem is on the edge of chaos and prone to failure. Data were collected through studying documents, reports and interviews with experts, and then analysed using qualitative content analysis techniques, open and axial coding and metaphors derived from complexity and chaos theories. RESULTS The findings indicate that to understand and embrace the complexity of the health innovation ecosystem throughout its development and evolution and manage and lead it through the edge of chaos towards successful interorganizational systems performance, it is necessary to use gap analysis to achieve consensus, establish a highly interactive governance structure with key stakeholders of the ecosystem, maintain flexibility to control bifurcations (butterfly effect), prevent transforming emergency solutions into standard routines and ensure the sustainability of the ecosystem against future threats by long-term financial security. CONCLUSIONS This research provides insights into the dynamics of complex health systems and offers strategies for promoting successful innovation through collaborative networks and interorganizational systems in the development and evolution of the health innovation ecosystem. By embracing complexity and chaos, healthcare professionals, policy-makers and researchers can collaboratively address complex challenges and improve outcomes in health network activities. The conclusion section provides guidelines for successfully managing the complexity of the ecosystem and offers suggestions for further research.
Collapse
Affiliation(s)
- Mehrnaz Moeenian
- Department of Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Ghazinoory
- Department of Information Technology Management, Tarbiat Modares University, Tehran, Iran.
| | - Pegah Yaghmaie
- School of Business, Capilano University, Vancouver, Canada
| |
Collapse
|
4
|
Mihuta C, Socaci A, Hogea P, Tudorache E, Mihuta MS, Oancea C. Colliding Challenges: An Analysis of SARS-CoV-2 Infection in Patients with Pulmonary Tuberculosis versus SARS-CoV-2 Infection Alone. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:823. [PMID: 38793006 PMCID: PMC11123355 DOI: 10.3390/medicina60050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: The concurrent occurrence of tuberculosis and COVID-19 coinfection poses significant clinical complexities, warranting a nuanced approach to diagnosis, management, and patient care. Materials and Methods: A retrospective, cross-sectional study was conducted on two groups: one comprising 32 patients with pulmonary TB (PTB) and COVID-19 co-infection, and one including 100 patients with COVID-19 alone. Data was collected from medical records, including patient history, clinical parameters, laboratory, imaging results, and patient outcome. Results: A lower BMI emerges as a significant marker suggesting underlying PTB in patients with SARS-CoV-2 co-infection. Type 2 diabetes mellitus increases the risk of death in PTB-SARS-CoV-2 co-infection. Co-infected patients show lymphocytopenia and higher neutrophil levels, CRP, transaminases, and D-dimer levels. Elevated CRP and ALT levels are linked to increased co-infection likelihood. Certain parameters like SpO2, CRP, ALT, AST, and D-dimer effectively differentiate between co-infected and COVID-19 patients. Platelet-to-lymphocyte ratio is notably higher in co-infected individuals. Lesion severity on imaging is significantly associated with co-infection, highlighting imaging's diagnostic importance. Longer hospital stays are linked to co-infection but not significantly to death risk. Conclusions: Certain clinical and biological factors may serve as potential indicators of PTB co-infection in patients with SARS-CoV-2.
Collapse
Affiliation(s)
- Camil Mihuta
- Department of Doctoral Studies, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
| | - Adriana Socaci
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Department of Biology and Life Sciences, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Patricia Hogea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Simina Mihuta
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Cristian Oancea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Filip R, Gheorghita Puscaselu R, Anchidin-Norocel L, Dimian M, Savage WK. Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. J Pers Med 2022; 12:1295. [PMID: 36013244 PMCID: PMC9409667 DOI: 10.3390/jpm12081295] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
Beginning in December 2019, the world faced a critical new public health stressor with the emergence of SARS-CoV-2. Its spread was extraordinarily rapid, and in a matter of weeks countries across the world were affected, notably in their ability to manage health care needs. While many sectors of public structures were impacted by the pandemic, it particularly highlighted shortcomings in medical care infrastructures around the world that underscored the need to reorganize medical systems, as they were vastly unprepared and ill-equipped to manage a pandemic and simultaneously provide general and specialized medical care. This paper presents modalities in approaches to the pandemic by various countries, and the triaged reorganization of medical sections not considered first-line in the pandemic that was in many cases transformed into wards for treating COVID-19 cases. As new viruses and structural variants emerge, it is important to find solutions to streamline medical care in hospitals, which includes the expansion of digital network medicine (i.e., telemedicine and mobile health apps) for patients to continue to receive appropriate care without risking exposure to contagions. Mobile health app development continues to evolve with specialized diagnostics capabilities via external attachments that can provide rapid information sharing between patients and care providers while eliminating the need for office visits. Telemedicine, still in the early stages of adoption, especially in the developing world, can ensure access to medical information and contact with care providers, with the potential to release emergency rooms from excessive cases, and offer multidisciplinary access for patients and care providers that can also be a means to avoid contact during a pandemic. As this pandemic illustrated, an overhaul to streamline health care is essential, and a move towards greater use of mobile health and telemedicine will greatly benefit public health to control the spread of new variants and future outbreaks.
Collapse
Affiliation(s)
- Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- BK Laboratory, SuceavaCounty Emergency Hospital, 720224 Suceava, Romania
| | - Roxana Gheorghita Puscaselu
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Liliana Anchidin-Norocel
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Wesley K. Savage
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
6
|
Agwa SHA, Elghazaly H, El Meteini MS, Yahia YA, Khaled R, Abd Elsamee AM, Darwish RM, Elsayed SM, Hafez H, Mahmoud BS, Em F, Matboli M. Identifying SARS-CoV-2 Lineage Mutation Hallmarks and Correlating Them With Clinical Outcomes in Egypt: A Pilot Study. Front Mol Biosci 2022; 9:817735. [PMID: 35350713 PMCID: PMC8958014 DOI: 10.3389/fmolb.2022.817735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to over 4.9 million deaths as of October 2021. One of the main challenges of creating vaccines, treatment, or diagnostic tools for the virus is its mutations and emerging variants. A couple of variants were declared as more virulent and infectious than others. Some approaches were used as nomenclature for SARS-CoV-2 variants and lineages. One of the most used is the Pangolin nomenclature. In our study, we enrolled 35 confirmed SARS-CoV-2 patients and sequenced the viral RNA in their samples. We also aimed to highlight the hallmark mutations in the most frequent lineage. We identified a seven-mutation signature for the SARS-CoV-2 C36 lineage, detected in 56 countries and an emerging lineage in Egypt. In addition, we identified one mutation which was highly negatively correlated with the lineage. On the other hand, we found no significant correlation between our clinical outcomes and the C36 lineage. In conclusion, the C36 lineage is an emerging SARS-CoV-2 variant that needs more investigation regarding its clinical outcomes compared to other strains. Our study paves the way for easier diagnosis of variants of concern using mutation signatures.
Collapse
Affiliation(s)
- Sara H A Agwa
- Clinical Pathology and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hesham Elghazaly
- Oncology Department, Medical Ain Shams Research Institute (MASRI), Cairo, Egypt
| | - Mahmoud Shawky El Meteini
- Department of General Surgery, The School of Medicine, University of Ain Shams, Abbassia, Cairo, Egypt
| | - Yahia A Yahia
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Aya M Abd Elsamee
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Reham M Darwish
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Shaimaa M Elsayed
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Hala Hafez
- Clinical Pathology Department, Infection Control Unit, University of Ain Shams, Cairo, Egypt
| | - Basma S Mahmoud
- Clinical Pathology Department, Infection Control Unit, University of Ain Shams, Cairo, Egypt
| | - Fouda Em
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Ain Shams, Cairo, Egypt
| |
Collapse
|
7
|
Vo V, Tillett RL, Chang CL, Gerrity D, Betancourt WQ, Oh EC. SARS-CoV-2 variant detection at a university dormitory using wastewater genomic tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:149930. [PMID: 34536875 PMCID: PMC8421076 DOI: 10.1016/j.scitotenv.2021.149930] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
In the Fall of 2020, university campuses in the United States resumed on-campus instruction and implemented wastewater monitoring for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While quantitative polymerase chain reaction (qPCR) tests were deployed successfully to detect viral RNA in wastewater across campuses, the feasibility of detecting viral variants from a residential building like a dormitory was unclear. Here, we demonstrate that wastewater surveillance from a dormitory with at least three infected students could lead to the identification of viral genomes with more than 95% coverage. Our results indicate that viral variant detection from wastewater is achievable at a dormitory and that coronavirus disease 2019 (COVID-19) wastewater surveillance programs will benefit from the implementation of viral whole genome sequencing at universities.
Collapse
Affiliation(s)
- Van Vo
- Laboratory of Neurogenetics and Precision Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ching-Lan Chang
- Laboratory of Neurogenetics and Precision Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Walter Q Betancourt
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA.
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Department of Internal Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
8
|
A Conservative Replacement in the Transmembrane Domain of SARS-CoV-2 ORF7a as a Putative Risk Factor in COVID-19. BIOLOGY 2021; 10:biology10121276. [PMID: 34943191 PMCID: PMC8698902 DOI: 10.3390/biology10121276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary The pathogenicity and transmissibility of the COVID-19 pandemic causative agent, the SARS-CoV-2 virus, is related to the functions of the proteins synthesized intracellularly, as guided by viral RNA. It is vitally important to accurately pinpoint novel variants of concern of the SARS-CoV-2 virus, in order to understand the molecular features of novel mutations and manage the on-going battle against the COVID-19 pandemic. We focused on A105V mutation in the ORF7a accessory protein. Sequencing and clinical data showed that this mutation is associated with increased severity and lethality in a group of Romanian patients, despite a lower viral copy number and a lower number of associated comorbidities. This effect is primarily due to increased protein stability through allosteric effects as shown by molecular dynamics analyses. This behavior manifests especially among residues 39–56, and the ones adjacent to 26–30 loop, placed in direct contact with potential interaction partners. Together, the results provide novel insights into the role of ORF7a in the pathogenicity of SARS-CoV-2. Abstract The ongoing COVID-19 pandemic follows an unpredictable evolution, driven by both host-related factors such as mobility, vaccination status, and comorbidities and by pathogen-related ones. The pathogenicity of its causative agent, SARS-CoV-2 virus, relates to the functions of the proteins synthesized intracellularly, as guided by viral RNA. These functions are constantly altered through mutations resulting in increased virulence, infectivity, and antibody-evasion abilities. Well-characterized mutations in the spike protein, such as D614G, N439K, Δ69–70, E484K, or N501Y, are currently defining specific variants; however, some less studied mutations outside the spike region, such as p. 3691 in NSP6, p. 9659 in ORF-10, 8782C > T in ORF-1ab, or 28144T > C in ORF-8, have been proposed for altering SARS-CoV-2 virulence and pathogenicity. Therefore, in this study, we focused on A105V mutation of SARS-CoV-2 ORF7a accessory protein, which has been associated with severe COVID-19 clinical manifestation. Molecular dynamics and computational structural analyses revealed that this mutation differentially alters ORF7a dynamics, suggesting a gain-of-function role that may explain its role in the severe form of COVID-19 disease.
Collapse
|