1
|
Martínez-Mira A, Castillo-Saldarriaga C, Uribe-Gutiérrez L, Céspedes-Gutíerrez E, Cortés-Rojas D, Gómez-Álvarez M, Cruz-Barrera M. Culture media design and scaling-up of submerged fermentation for the nematophagous fungus Duddingtonia flagrans. Exp Parasitol 2025; 269:108901. [PMID: 39805386 DOI: 10.1016/j.exppara.2025.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Biological control, which utilizes nematophagous fungi to reduce gastrointestinal nematode populations, may effectively diminish the need for chemical anthelmintic treatments. However, the limited knowledge surrounding the mass production of chlamydospores hinders the widespread use of biological products as alternatives to traditional anthelmintics. This study aimed to evaluate the development of liquid culture media for the large-scale production of the nematophagous fungi Duddingtonia flagrans using a systematic procedure, progressing from microplates to bioreactor. The liquid culture media were successfully validated in a 13 L bioreactor, achieving a yield of 2.18x107 chlam/g per day, which is comparable to the standard process of solid-state fermentation (SSF). Moreover, the nematode predatory ability remained unaffected by the changes in scales and exhibited a superior efficacy of over 90%. Consequently, this study demonstrates that the submerged fermentation approach serves as a viable alternative for the mass production of nematophagous fungi like D. flagrans.
Collapse
Affiliation(s)
- Anny Martínez-Mira
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| | - Carlos Castillo-Saldarriaga
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| | - Liz Uribe-Gutiérrez
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tibaitatá Research Center, Mosquera, Colombia
| | | | - Diego Cortés-Rojas
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia.
| | - Martha Gómez-Álvarez
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| | - Mauricio Cruz-Barrera
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| |
Collapse
|
2
|
Linghu SX, Zhang Y, Zuo JF, Mo MH, Li GH. AfSwi6 Regulates the Stress Response, Chlamydospore Production, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys flagrans. Microorganisms 2024; 12:1765. [PMID: 39338440 PMCID: PMC11433780 DOI: 10.3390/microorganisms12091765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. In this study, we characterized AfSwi6 via gene disruption using the homologous recombinant method and transcriptome sequencing. Knockout of the AfSwi6 gene caused defects in mycelial growth, trap formation and pathogenicity, chlamydospore production, and stress response. Moreover, the transcriptome data indicated that AfSwi6 was related to DNA repair, stress response, and plasma membrane fusion. The result showed that AfSwi6 has a significant effect on trap development and chlamydospore production in A. flagrans.
Collapse
Affiliation(s)
| | | | | | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Liu W, Cong B, Lin J, Liu S, Deng A, Zhao L. Taxonomic identification and temperature stress tolerance mechanisms of Aequorivita marisscotiae sp. nov. Commun Biol 2023; 6:1186. [PMID: 37990058 PMCID: PMC10663628 DOI: 10.1038/s42003-023-05559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
The deep sea harbours microorganisms with unique life characteristics and activities due to adaptation to particular environmental conditions, but the limited sample collection and pure culture techniques available constrain the study of deep-sea microorganisms. In this study, strain Ant34-E75 was isolated from Antarctic deep-sea sediment samples and showed the highest 16 S rRNA gene sequence similarity (97.18%) with the strain Aequorivita viscosa 8-1bT. Strain Ant34-E75 is psychrotrophic and can effectively increase the cold tolerance of Chlamydomonas reinhardtii (a model organism). Subsequent transcriptome analysis revealed multiple mechanisms involved in the Ant34-E75 response to temperature stress, and weighted gene co-expression network analysis (WGCNA) showed that the peptidoglycan synthesis pathway was the key component. Overall, this study provides insights into the characteristics of a deep-sea microorganism and elucidates mechanisms of temperature adaptation at the molecular level.
Collapse
Affiliation(s)
- Wenqi Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Aifang Deng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
4
|
Zhu X, Wang Y, Shen C, Zhang S, Wang W. The participation of vacuoles and the regulation of various metabolic pathways under acid stress promote the differentiation of chlamydospore in Trichoderma harzianum T4. J Appl Microbiol 2023; 134:lxad203. [PMID: 37669895 DOI: 10.1093/jambio/lxad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
AIMS Chlamydospores are a special, differentiated type with high environmental resistance. Consequently, the chlamydospores of Trichoderma harzianum T4 can used to industrialize the latter. This study aimed to investigate the key factors affecting the sporulation type of T. harzianum T4 and the mechanisms underlying this effect. METHODS AND RESULTS In the liquid fermentation of T. harzianum T4, ammonium sulfate (AS) inhibited conidia formation and chlamydospore production. Fermentation tests revealed that acid stress induced sporulation type alteration. Transcriptomic analysis was used to evaluate the adaptation strategy and mechanism underlying spore type alteration under acid stress. The fermentation experiments involving the addition of amino acids revealed that branched-chain amino acids benefited conidia production, whereas β-alanine benefited chlamydospore production. Confocal microscope fluorescence imaging and chloroquine intervention demonstrated that vacuole function was closely related to chlamydospore production. CONCLUSION The sporulation type of T. harzianum T4 can be controlled by adjusting the fermentation pH. T. harzianum T4 cells employ various self-protection measures against strong acid stress, including regulating their metabolism to produce a large number of chlamydospores for survival.
Collapse
Affiliation(s)
- Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Zhang Y, Wang X, Ran Y, Zhang KQ, Li GH. AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus Arthrobotrys flagrans. Microbiol Spectr 2023; 11:e0018623. [PMID: 37358432 PMCID: PMC10434191 DOI: 10.1128/spectrum.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023] Open
Abstract
Arthrobotrys flagrans (Duddingtonia flagrans) is a typical nematode-trapping fungus which has been used for nematode biocontrol. The global regulator LaeA is widely distributed in filamentous fungi and plays a crucial role in secondary metabolism and development in addition to pathogenicity in fungal pathogens. In this study, the chromosome-level genome of A. flagrans CBS 565.50 was sequenced and homologous sequences of LaeA were identified in A. flagrans. A. flagrans LaeA (AfLaeA) knockout resulted in slower hyphal growth and a smoother hyphal surface. Importantly, deletion of AfLaeA resulted in the absence of chlamydospores and attenuated glycogen and lipid accumulation in hyphae. Similarly, disruption of the AfLaeA gene led to fewer traps and electron-dense bodies, lower protease activity, and a delay in capturing nematodes. The AfLaeA gene had a large effect on the secondary metabolism of A. flagrans, and both the deletion and overexpression of AfLaeA could yield new compounds, whereas some compounds were lost due to the absence of the AfLaeA. Protein-protein interactions between AfLaeA and another eight proteins were detected. Furthermore, transcriptome data analysis showed that 17.77% and 35.51% of the genes were influenced by the AfLaeA gene on days 3 and 7, respectively. AfLaeA gene deletion resulted in the higher expression level of the artA gene cluster, and multiple differentially expressed genes involved in glycogen and lipid synthesis and metabolism showed opposite expression patterns in wild-type and ΔAfLaeA strains. In summary, our results provide novel insights into the functions of AfLaeA in mycelial growth, chlamydospore production, pathogenicity, secondary metabolism, and energy metabolism in A. flagrans. IMPORTANCE The regulation of biological functions, such as the secondary metabolism, development, and pathogenicity of LaeA, has been reported in multiple fungi. But to date, no study on LaeA in nematode-trapping fungi has been reported. Moreover, it has not been investigated whether or not LaeA is involved in energy metabolism and chlamydospore formation has not been investigated. Especially in the formation mechanism of chlamydospores, several transcription factors and signaling pathways are involved in the production of chlamydospores, but the mechanism of chlamydospore formation from an epigenetic perspective has not been revealed. Concurrently, an understanding of protein-protein interactions will provide a broader perspective on the regulatory mechanism of AfLaeA in A. flagrans. This finding is critical for understanding the regulatory role of AfLaeA in the biocontrol fungus A. flagrans and establishes a foundation for developing high-efficiency nematode biocontrol agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuan Ran
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Karuppiah V, Zhang C, Liu T, Li Y, Chen J. Transcriptome Analysis of T. asperellum GDFS 1009 Revealed the Role of MUP1 Gene on the Methionine-Based Induction of Morphogenesis and Biological Control Activity. J Fungi (Basel) 2023; 9:jof9020215. [PMID: 36836329 PMCID: PMC9963050 DOI: 10.3390/jof9020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Trichoderma spp. are biological control agents extensively used against various plant pathogens. However, the key genes shared for the growth, development and biological activity are unclear. In this study, we explored the genes responsible for the growth and development of T. asperellum GDFS 1009 under liquid-shaking culture compared to solid-surface culture. Transcriptome analysis revealed 2744 differentially expressed genes, and RT-qPCR validation showed that the high-affinity methionine permease MUP1 was the key gene for growth under different media. Deletion of the MUP1 inhibited the transport of amino acids, especially methionine, thereby inhibiting mycelial growth and sporulation, whereas inhibition could be mitigated by adding methionine metabolites such as SAM, spermidine and spermine. The MUP1 gene responsible for the methionine-dependent growth of T. asperellum was confirmed to be promoted through the PKA pathway but not the MAPK pathway. Furthermore, the MUP1 gene also increased the mycoparasitic activity of T. asperellum against Fusarium graminearum. Greenhouse experiments revealed that MUP1 strengthens the Trichoderma-induced crop growth promotion effect and SA-induced pathogen defense potential in maize. Our study highlights the effect of the MUP1 gene on growth and morphological differentiation and its importance for the agricultural application of Trichoderma against plant diseases.
Collapse
Affiliation(s)
- Valliappan Karuppiah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yi Li
- Shanghai Dajing Biotec. Ltd., Shanghai 201100, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
7
|
Exogenous Regulators Enhance the Yield and Stress Resistance of Chlamydospores of the Biocontrol Agent Trichoderma harzianum T4. J Fungi (Basel) 2022; 8:jof8101017. [PMID: 36294583 PMCID: PMC9604748 DOI: 10.3390/jof8101017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Trichoderma strains have been successfully used in plant disease control. However, the poor stress resistance of mycelia and conidia makes processing and storage difficult. Furthermore, they cannot produce chlamydospores in large quantities during fermentation, which limits the industrialization process of chlamydospore preparation. It is important to explore an efficient liquid fermentation strategy for ensuring chlamydospore production in Trichoderma harzianum. We found that the addition of mannitol, glycine betaine, and N-acetylglucosamine (N-A-G) during liquid fermentation effectively increases the yield of chlamydospores. Furthermore, we provided evidence that chlamydospores have stronger tolerance to high temperature, ultraviolet, and hypertonic stress after the addition of mannitol and trehalose. Lipids are an important component of microbial cells and impact the stress resistance of microorganisms. We studied the internal relationship between lipid metabolism and the stress resistance of chlamydospores by detecting changes in the lipid content and gene expression. Our results showed that mannitol and trehalose cause lipid accumulation in chlamydospores and increase the unsaturated fatty acid content. In conclusion, we verified that these exogenous regulators increase the production of chlamydospores and enhance their stress resistance by regulating lipid metabolism. In addition, we believe that lipid metabolism is an important part of the chlamydospore production process and impacts the stress resistance of chlamydospores. Our findings provide clues for studying the differentiation pathway of chlamydospores in filamentous fungi and a basis for the industrial production of chlamydospores.
Collapse
|
8
|
Wang Y, Liu L, Pu X, Ma C, Qu H, Wei M, Zhang K, Wu Q, Li C. Transcriptome Analysis and SNP Identification Reveal That Heterologous Overexpression of Two Uncharacterized Genes Enhances the Tolerance of Magnaporthe oryzae to Manganese Toxicity. Microbiol Spectr 2022; 10:e0260521. [PMID: 35638819 PMCID: PMC9241697 DOI: 10.1128/spectrum.02605-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Manganese is a crucial trace element that constitutes the cofactors of many enzymes. However, excessive Mn2+ can be toxic for both prokaryotes and eukaryotes. The mechanism of fungal genetics and metabolism in response to Mn2+ stress remains understudied, warranting further studies. Magnaporthe oryzae is well-established as the most destructive pathogen of rice. A field strain, YN2046, more sensitive to Mn2+ toxicity than other strains, was obtained from a previous study. Herein, we explored the genetic mechanisms of Mn2+ sensitivity in YN2046 through comparative transcriptomic analyses. We found that many genes previously reported to participate in Mn2+ stress were not regulated in YN2046. These non-responsive genes might cause Mn2+ sensitivity in YN2046. Weight gene correlation network analysis (WGCNA) was performed to characterize the expression profile in YN2046. Some overexpressed genes were only found in the Mn2+ tolerant isolate YN125. Among these, many single nucleotide polymorphism (SNP) were identified between YN125 and YN2046, which might disrupt the expression levels of Mn responsive genes. We cloned two uncharacterized genes, MGG_13347 and MGG_16609, from YN125 and transformed them to YN2046 with a strong promoter. Our results showed that the heterologous overexpression of two genes in YN2046 restored its sensitivity. Transcriptomic and biochemical analyses were performed to understand Mn tolerance mechanisms mediated by the two heterologous overexpressed genes. Our results showed that heterologous overexpression of these two genes activated downstream gene expression and metabolite production to restore M. oryzae sensitivity to Mn, implying that SNPs in responsive genes account for different phenotypes of the two strains under Mn stress. IMPORTANCE Heavy metals are used for fungicides as they target phytopathogen in multiple ways. Magnaporthe oryzae is the most destructive rice pathogen and is threatening global rice production. In the eukaryotes, the regulation mechanisms of Mn homeostasis often focus on the posttranslation, there were a few results about regulation at transcript level. The comparative transcriptome analysis showed that fewer genes were regulated in the Mn-sensitive strain. WGCNA and SNP analyses found that mutations in promoter and coding sequence regions might disrupt the expression of genes involved in Mn detoxification in the sensitive strain. We transferred two unannotated genes that were cloned from the Mn-tolerant strain into a sensitive strain with strong promoters, and the transformants exhibited an enhanced tolerance to Mn2+ toxicity. Transcriptome and biochemistry results indicated that heterologous overexpression of the two genes enhanced the tolerance to Mn toxicity by reactivation of downstream genes in M. oryzae.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Mian Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|