1
|
Chang J, Zhou Y, Zhang M, Li X, Zhang N, Luo X, Ni B, Wu H, Lu R, Zhang Y. CalR Inhibits the Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus. J Microbiol 2024; 62:1125-1132. [PMID: 39643841 DOI: 10.1007/s12275-024-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 12/09/2024]
Abstract
Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus. In this study, we have demonstrated that the deletion of calR significantly enhances the swimming motility of V. parahaemolyticus under low Ca conditions but not under high Ca conditions or in the absence of Ca. CalR binds to the regulatory DNA regions of flgM, flgA, and flgB, which are located within the polar flagellar gene loci, with the purpose of repressing their transcription. Additionally, it exerts an indirect negative control over the transcription of flgK. The overexpression of CalR in Escherichia coli resulted in a reduction in the expression levels of flgM, flgA, and flgB, while having no impact on the expression of flgK. In summary, this research demonstrates that the negative regulation of V. parahaemolyticus swimming motility by CalR under low Ca conditions is achieved through its regulation on the transcription of polar flagellar genes.
Collapse
Affiliation(s)
- Jingyang Chang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yining Zhou
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Nan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Bin Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Chang J, Li F, He M, Li R, Hou Y, Zhang Y, Lu R, Yang M. H-NS-Mediated Regulation of Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus. Curr Microbiol 2024; 82:5. [PMID: 39579231 DOI: 10.1007/s00284-024-03993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Vibrio parahaemolyticus is equipped with two distinct flagellar systems: a polar flagellum and numerous lateral flagella. The polar flagellum plays a role in propelling swimming in liquids, while the lateral flagella serve to enhance swarming on surfaces or in viscous environments. H-NS is a histone-like nucleoid structuring protein that plays a regulatory role in both the swimming and swarming motility of V. parahaemolyticus. However, the detailed mechanisms have not been fully understood. In this study, we have demonstrated that the deletion of hns hindered the growth rate of V. parahaemolyticus during the logarithmic growth phase and significantly decreased the swimming motility. H-NS directly activated the transcription of flgMN, flgAMN, flgBCDEFGHIJ, and flgKL-flaC located within the polar flagellar gene clusters. The expression of H-NS in Escherichia coli led to a marked elevation in the expression levels of flgM, flgA, flgB, and flgK, suggesting the positive effect of H-NS on the expression of polar flagellar genes in E. coli. This work demonstrates that the positive regulation of H-NS on the swimming motility in V. parahaemolyticus may be achieved through its regulation of polar flagellar gene expression and bacterial growth.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jingyang Chang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Feng Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Rui Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
3
|
Wang Z, Wu Y, Liu M, Chen L, Xiao K, Huang Z, Zhao Y, Wang H, Ding Y, Lin X, Zeng J, Peng F, Zhang J, Wang J, Wu Q. The Gene Cluster Cj0423- Cj0425 Negatively Regulates Biofilm Formation in Campylobacter jejuni. Int J Mol Sci 2024; 25:12116. [PMID: 39596184 PMCID: PMC11595200 DOI: 10.3390/ijms252212116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is a zoonotic foodborne pathogen that is widely distributed worldwide. Its optimal growth environment is microaerophilic conditions (5% O2, 10% CO2), but it can spread widely in the atmospheric environment. Biofilms are thought to play an important role in this process. However, there are currently relatively few research works on the regulatory mechanisms of C. jejuni biofilm formation. In this study, a pan-genome analysis, combined with the analysis of biofilm phenotypic information, revealed that the gene cluster Cj0423-Cj0425 is associated with the negative regulation of biofilm formation in C. jejuni. Through gene knockout experiments, it was observed that the Cj0423-Cj0425 mutant strain significantly increased biofilm formation and enhanced flagella formation. Furthermore, pull-down assay revealed that Cj0424 interacts with 93 proteins involved in pathways such as fatty acid synthesis and amino acid metabolism, and it also contains the quorum sensing-related gene luxS. This suggests that Cj0423-Cj0425 affects fatty acid synthesis and amino acid metabolism, influencing quorum sensing and strain motility, ultimately inhibiting biofilm formation.
Collapse
Affiliation(s)
- Zhi Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510641, China; (Z.W.); (M.L.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Ming Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510641, China; (Z.W.); (M.L.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Kaishan Xiao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Zhenying Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yibing Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Huixian Wang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China;
| | - Xiuhua Lin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Jiahui Zeng
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Feiting Peng
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Qingping Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510641, China; (Z.W.); (M.L.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.W.); (L.C.); (K.X.); (Y.Z.); (H.W.); (X.L.); (J.Z.); (F.P.); (J.Z.)
| |
Collapse
|
4
|
Liu Y, Liu Y, Hao L, Cao J, Jiang L, Yi H. Metabolomic Approaches to Study the Potential Inhibitory Effects of Plantaricin Q7 against Listeria monocytogenes Biofilm. Foods 2024; 13:2573. [PMID: 39200500 PMCID: PMC11353926 DOI: 10.3390/foods13162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found that plantaricin Q7 produced by Lactiplantibacillus plantarum Q7 could inhibit and reduce L. monocytogenes biofilm, but the specific mechanism remains unclear. In this study, the inhibitive and reduced activity of plantaricin Q7 on L. monocytogenes biofilm was investigated by metabolomics. The results showed that plantaricin Q7 inhibited the synthesis of L. monocytogenes biofilm mainly through purine metabolism and glycerol phospholipid metabolism, and the key differential metabolites included acetylcholine and hypoxanthine with a decrease in abundance from 5.80 to 4.85. In addition, plantaricin Q7 reduced the formed L. monocytogenes biofilm by purine metabolism and arginine biosynthesis, and the main differential metabolites were N-acetylglutamate and D-ribose-1-phosphate with a decrease in abundance from 6.21 to 4.73. It was the first report that purine metabolism and amino acid metabolism were the common metabolic pathway for plantaricin Q7 to inhibit and reduce L. monocytogenes biofilm, which could be potential targets to control L. monocytogenes biofilm. A putative metabolic pathway for L. monocytogenes biofilm inhibition and reduction by plantaricin Q7 was proposed. These findings provided a novel strategy to control L. monocytogenes biofilm in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.L.); (Y.L.); (L.H.); (J.C.); (L.J.)
| |
Collapse
|
5
|
Li X, Lian W, Zhang M, Luo X, Zhang Y, Lu R. QsvR and OpaR coordinately regulate the transcription of cpsS and cpsR in Vibrio parahaemolyticus. Can J Microbiol 2024; 70:128-134. [PMID: 38415613 DOI: 10.1139/cjm-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, has a strong capacity to form biofilms on surfaces, which is strictly regulated by the CpsS-CpsR-CpsQ regulatory cascade. OpaR, a master regulator of quorum sensing, is a global regulator that controls multiple cellular pathways including biofilm formation and virulence. QsvR is an AraC-type regulator that works coordinately with OpaR to control biofilm formation and virulence gene expression of V. parahaemolyticus. QsvR and OpaR activate cpsQ transcription. OpaR also activates cpsR transcription, but lacks the detailed regulatory mechanisms. Furthermore, it is still unknown whether QsvR regulates cpsR transcription, as well as whether QsvR and OpaR regulate cpsS transcription. In this study, the results of quantitative real-time PCR and LacZ fusion assays demonstrated that deletion of qsvR and/or opaR significantly decreased the expression levels of cpsS and cpsR compared to the wild-type strain. However, the results of two-plasmid lacZ reporter and electrophoretic mobility-shift assays showed that both QsvR and OpaR were unable to bind the regulatory DNA regions of cpsS and cpsR. Therefore, transcription of cpsS and cpsR was coordinately and indirectly activated by QsvR and OpaR. This work enriched our knowledge on the regulatory network of biofilm formation in V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Wei Lian
- Nantong Center for Disease Control and Prevention, Nantong 226007, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China
| |
Collapse
|
6
|
Chakrapani S, Panigrahi A, Palanichamy E, Thangaraj SK, Radhakrishnan N, Panigrahi P, Nagarathnam R. Evaluation of Therapeutic Efficiency of Stylicin against Vibrio parahaemolyticus Infection in Shrimp Penaeus vannamei through Comparative Proteomic Approach. Probiotics Antimicrob Proteins 2024; 16:76-92. [PMID: 36459385 DOI: 10.1007/s12602-022-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
The shrimp immune system defends and protects against infection by its naturally expressing antimicrobial peptides. Stylicin is a proline-rich anionic antimicrobial peptide (AMP) that exhibits potent antimicrobial activity. In this study, stylicin gene was isolated from Penaeus vannamei, cloned into vector pET-28a ( +), and overexpressed in Escherichia coli SHuffle T7 cells. The protein was purified and tested for its antibiofilm activity against shrimp pathogen Vibrio parahaemolyticus. It was resulted that the recombinant stylicin significantly reduced the biofilm formation of V. parahaemolyticus at a minimum inhibitory concentration (MIC) of 200 µg. Cell aggregation was observed by using scanning electron microscopy and confocal laser scanning microscopy, and it was resulted that stylicin administration significantly affects the cell structure and biofilm density of V. parahaemolyticus. In addition, real-time PCR confirmed the downregulation (p < 0.05) of genes responsible for growth and colonization. The efficacy of stylicin was tested by injecting it into shrimp challenged with V. parahaemolyticus and 7 days after infection, stylicin-treated animals recovered and survived better in both treatments (T2-100 µg stylicin, - 68.8%; T1-50 µg stylicin, 60%) than in control (7%) (p < 0.01). Comparative proteomic and mass spectrometry analysis of shrimp hemolymph resulted that the expressed proteins were involved in cell cycle, signal transduction, immune pathways, and stress-related proteins representing infection and recovery, and were significantly different in the stylicin-treated groups. The result of this study suggests that the stylicin can naturally boost immunity and can be used as a choice for treating V. parahaemolyticus infections in shrimp.
Collapse
Affiliation(s)
- Saranya Chakrapani
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India.
| | - Esakkiraj Palanichamy
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Sathish Kumar Thangaraj
- Aquatic Animal Health & Environment Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Naveenkumar Radhakrishnan
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence (CENCON), Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | | |
Collapse
|
7
|
Zhang Y, Zhang T, Qiu Y, Zhang M, Lu X, Yang W, Hu L, Zhou D, Gao B, Lu R. Transcriptomic Profiles of Vibrio parahaemolyticus During Biofilm Formation. Curr Microbiol 2023; 80:371. [PMID: 37838636 DOI: 10.1007/s00284-023-03425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
Vibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing. A total of 183, 503, and 729 genes were significantly differentially expressed in the bacterial cells at 12, 24 and 48 h, respectively, compared with that at 6 h. Of these, 92 genes were consistently activated or repressed from 6 to 48 h. The genes involved in polar flagellum, chemotaxis, mannose-sensitive haemagglutinin type IV pili, capsular polysaccharide, type III secretion system 1 (T3SS1), T3SS2, thermostable direct hemolysin (TDH), type VI secretion system 1 (T6SS1) and T6SS2 were downregulated, whereas those involved in V. parahaemolyticus pathogenicity island (Vp-PAI) (except for T3SS2 and TDH) and membrane fusion proteins were upregulated. Three extracellular protease genes (vppC, prtA and VPA1071) and a dozen of outer membrane protein encoding genes were also significantly differentially expressed during biofilm formation. In addition, five putative c-di-GMP metabolism-associated genes were significantly differentially expressed, which may account for the drop in c-di-GMP levels after the beginning of biofilm formation. Moreover, many putative regulatory genes were significantly differentially expressed, and more than 1000 putative small non-coding RNAs were detected, suggesting that biofilm formation was tightly regulated by complex regulatory networks. The data provided a global view of gene expression profiles during biofilm formation, showing that the significantly differentially expressed genes were involved in multiple cellular pathways, including virulence, biofilm formation, metabolism, and regulation.
Collapse
Affiliation(s)
- Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Yue Qiu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
8
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|