1
|
Lo HR, Yan CH, Yan Y, Lo CC. Dimercaptosuccinic acid with membrane-targeting activity against Pseudomonas aeruginosa. Microb Pathog 2025; 204:107550. [PMID: 40194609 DOI: 10.1016/j.micpath.2025.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Multidrug resistant (MDR) gram-negative bacteria (GNB) are a serious health threat. GNB require divalent cations for the integrity of their outer membrane (OM), which can be inhibited by dimercaptosuccinic acid (DMSA), a sulfhydryl-containing metal chelator that has been used as an antidote to heavy metal toxicity. We aim to investigatethe effects and mechanisms of action of DMSA on Pseudomonas aeruginosa. MAIN METHODS The inhibition of P. aeruginosa strains by DMSA was determined using growth kinetics analysis. Biofilm formation was evaluated using crystal violet staining after incubation for 24 h. We determined the bacterial OM permeability and cell membrane potential using propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethineoxonol (DiBAC4(3)) staining, respectively, following DMSA exposure. The bioenergetics-related activity of DMSA-treated bacteria was assessed by determining intracellular ATP levels, bacterial motility and N-phenyl-naphtylamide (NPN) efflux assay. RESULTS DMSA inhibited the growth of bacteria in a concentration-dependent manner and repressed biofilm formation by P. aeruginosa. DMSA-treated bacteria exhibited increased PI uptake and enhanced DiBAC4(3) fluorescence intensity compared with untreated cells. Treatment of P. aeruginosa with DMSA reduced the intracellular ATP levels, bacterial motility, and efflux activity in the tested cells. SIGNIFICANCE The antibacterial mechanisms of DMSA may be related to alterations in OM permeability, membrane depolarization, and impaired bioenergetics-related activity, which are essential for bacterial viability and infection.
Collapse
Affiliation(s)
- Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan.
| | - Cian-Hui Yan
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Ya Yan
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung, Taiwan
| |
Collapse
|
2
|
Hoffmann WH, Biquet-Bisquert A, Pedaci F, Nord AL. Measuring Bacterial Flagellar Motor Dynamics via a Bead Assay. Methods Mol Biol 2025; 2881:43-64. [PMID: 39704937 DOI: 10.1007/978-1-0716-4280-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The bacterial flagellar motor (BFM) is a rotary molecular machine that drives critical bacterial processes including motility, chemotaxis, biofilm formation, and infection. For over two decades, the bead assay, which measures the rotation of a microparticle attached to the flagellum of a surface-attached bacterium, has been instrumental in deciphering the motor's biophysical mechanisms. This technique has not only quantified the rotational speed and frequency of directional switching as a function of the viscous load on the flagellum but has also revealed the BFM's capacity for mechanosensitive speed modulation, adapting to environmental conditions. Yet, many fundamental mechanistic details of the BFM remain to be discovered, and recent breakthroughs in structural biology, providing atomic-level structures of many motor components, further fuel this active area of biophysical research. This chapter presents an in-depth protocol for the bead assay to measure BFM dynamics, emphasizing advanced methodologies for quantifying the intricate mechanics and rich behavior of this molecular machine.
Collapse
Affiliation(s)
- William H Hoffmann
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anaïs Biquet-Bisquert
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Rosinke K, Tachiyama S, Mrásek J, Liu J, Hoover TR. A Helicobacter pylori flagellar motor accessory is needed to maintain the barrier function of the outer membrane during flagellar rotation. PLoS Pathog 2025; 21:e1012860. [PMID: 39792952 PMCID: PMC11756786 DOI: 10.1371/journal.ppat.1012860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/23/2025] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein. Deletion analysis of hp0838 in H. pylori B128 showed that the gene is not required for motility in soft agar medium, but the mutant displayed a reduced growth rate and an increased sensitivity to bacitracin, which is an antibiotic that is normally excluded by the outer membrane. Introducing a plasmid-borne copy of hp0838 into the H. pylori Δhp0838 mutant suppressed the fitness defect and antibiotic sensitivity of the strain. A variant of the Δhp0838 mutant containing a frameshift mutation in pflA, which resulted in paralyzed flagella, displayed wild-type growth rate and resistance to bacitracin, suggesting the fitness defect and antibiotic sensitivity of the Δhp0838 mutant are dependent on flagellar rotation. Comparative analysis of in-situ structures of the wild type and Δhp0838 mutant motors revealed the Δhp0838 mutant motor lacked a previously undescribed ring structure with 18-fold symmetry located near the outer membrane. Given its role in formation of the motor outer ring, HP0838 was designated FapH (flagellar accessory protein in Helicobacter pylori) and the motor accessory formed the protein was named the FapH ring. Our data suggest that the FapH ring helps to preserve outer membrane barrier function during flagellar rotation. Given that FapH homologs are present in many members of the phylum Campylobacterota, they may have similar roles in protecting the outer membrane from damage due to flagellar rotation in these bacteria.
Collapse
Affiliation(s)
- Kyle Rosinke
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jan Mrásek
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jun Liu
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Dai Y, Wang ZG, Zare RN. Unlocking the electrochemical functions of biomolecular condensates. Nat Chem Biol 2024; 20:1420-1433. [PMID: 39327453 DOI: 10.1038/s41589-024-01717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Konyshev IV, Byvalov AA. The bacterial flagellum as an object for optical trapping. Biophys Rev 2024; 16:403-415. [PMID: 39309130 PMCID: PMC11415335 DOI: 10.1007/s12551-024-01212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
This letter considers the possibility of using the optical trap to study the structure and function of the microbial flagellum. The structure of the flagellum of a typical gram-negative bacterium is described in brief. A standard mathematical model based on the principle of superposition is used to describe the movement of an ellipsoidal microbial cell in a liquid medium. The basic principles of optical trapping based on the combined action of the light pressure and the gradient force are briefly clarified. Several problems related to thermal damage of living microscopic objects when the latter gets to the focus of a laser beam are shortly discussed. It is shown that the probability of cell damage depends nonlinearly on the wavelength of laser radiation. Finally, the model systems that would make it possible to study flagella of the free bacteria and the ones anchored or tethered on the surface of a solid material are discussed in detail.
Collapse
Affiliation(s)
- Ilya V. Konyshev
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| | - Andrey A. Byvalov
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| |
Collapse
|
6
|
Morimoto YV. Ion Signaling in Cell Motility and Development in Dictyostelium discoideum. Biomolecules 2024; 14:830. [PMID: 39062545 PMCID: PMC11274586 DOI: 10.3390/biom14070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-to-cell communication is fundamental to the organization and functionality of multicellular organisms. Intercellular signals orchestrate a variety of cellular responses, including gene expression and protein function changes, and contribute to the integrated functions of individual tissues. Dictyostelium discoideum is a model organism for cell-to-cell interactions mediated by chemical signals and multicellular formation mechanisms. Upon starvation, D. discoideum cells exhibit coordinated cell aggregation via cyclic adenosine 3',5'-monophosphate (cAMP) gradients and chemotaxis, which facilitates the unicellular-to-multicellular transition. During this process, the calcium signaling synchronizes with the cAMP signaling. The resulting multicellular body exhibits organized collective migration and ultimately forms a fruiting body. Various signaling molecules, such as ion signals, regulate the spatiotemporal differentiation patterns within multicellular bodies. Understanding cell-to-cell and ion signaling in Dictyostelium provides insight into general multicellular formation and differentiation processes. Exploring cell-to-cell and ion signaling enhances our understanding of the fundamental biological processes related to cell communication, coordination, and differentiation, with wide-ranging implications for developmental biology, evolutionary biology, biomedical research, and synthetic biology. In this review, I discuss the role of ion signaling in cell motility and development in D. discoideum.
Collapse
Affiliation(s)
- Yusuke V. Morimoto
- Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan;
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| |
Collapse
|
7
|
Lo WC, Krasnopeeva E, Pilizota T. Bacterial Electrophysiology. Annu Rev Biophys 2024; 53:487-510. [PMID: 38382113 DOI: 10.1146/annurev-biophys-030822-032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Teuta Pilizota
- School of Biological Sciences, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
8
|
Biquet-Bisquert A, Carrio B, Meyer N, Fernandes TFD, Abkarian M, Seduk F, Magalon A, Nord AL, Pedaci F. Spatiotemporal dynamics of the proton motive force on single bacterial cells. SCIENCE ADVANCES 2024; 10:eadl5849. [PMID: 38781330 PMCID: PMC11114223 DOI: 10.1126/sciadv.adl5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical gradients across biological membranes are vital for cellular bioenergetics. In bacteria, the proton motive force (PMF) drives essential processes like adenosine triphosphate production and motility. Traditionally viewed as temporally and spatially stable, recent research reveals a dynamic PMF behavior at both single-cell and community levels. Moreover, the observed lateral segregation of respiratory complexes could suggest a spatial heterogeneity of the PMF. Using a light-activated proton pump and detecting the activity of the bacterial flagellar motor, we perturb and probe the PMF of single cells. Spatially homogeneous PMF perturbations reveal millisecond-scale temporal dynamics and an asymmetrical capacitive response. Localized perturbations show a rapid lateral PMF homogenization, faster than proton diffusion, akin to the electrotonic potential spread observed in passive neurons, explained by cable theory. These observations imply a global coupling between PMF sources and consumers along the membrane, precluding sustained PMF spatial heterogeneity but allowing for rapid temporal changes.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Baptiste Carrio
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Nathan Meyer
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Thales F. D. Fernandes
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Manouk Abkarian
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Ashley L. Nord
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| |
Collapse
|
9
|
Manoj KM, Jacob VD, Kavdia M, Tamagawa H, Jaeken L, Soman V. Questioning rotary functionality in the bacterial flagellar system and proposing a murburn model for motility. J Biomol Struct Dyn 2023; 41:15691-15714. [PMID: 36970840 DOI: 10.1080/07391102.2023.2191146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Bacterial flagellar system (BFS) was the primary example of a purported 'rotary-motor' functionality in a natural assembly. This mandates the translation of a circular motion of components inside into a linear displacement of the cell body outside, which is supposedly orchestrated with the following features of the BFS: (i) A chemical/electrical differential generates proton motive force (pmf, including a trans-membrane potential, TMP), which is electro-mechanically transduced by inward movement of protons via BFS. (ii) Membrane-bound proteins of BFS serve as stators and the slender filament acts as an external propeller, culminating into a hook-rod that pierces the membrane to connect to a 'broader assembly of deterministically movable rotor'. We had disclaimed the purported pmf/TMP-based respiratory/photosynthetic physiology involving Complex V, which was also perceived as a 'rotary machine' earlier. We pointed out that the murburn redox logic was operative therein. We pursue the following similar perspectives in BFS-context: (i) Low probability for the evolutionary attainment of an ordered/synchronized teaming of about two dozen types of proteins (assembled across five-seven distinct phases) towards the singular agendum of rotary motility. (ii) Vital redox activity (not the gambit of pmf/TMP!) powers the molecular and macroscopic activities of cells, including flagella. (iii) Flagellar movement is noted even in ambiances lacking/countering the directionality mandates sought by pmf/TMP. (iv) Structural features of BFS lack component(s) capable of harnessing/achieving pmf/TMP and functional rotation. A viable murburn model for conversion of molecular/biochemical activity into macroscopic/mechanical outcomes is proposed herein for understanding BFS-assisted motility. HIGHLIGHTSThe motor-like functionalism of bacterial flagellar system (BFS) is analyzedProton/Ion-differential based powering of BFS is unviable in bacteriaUncouplers-sponsored effects were misinterpreted, resulting in a detour in BFS researchThese findings mandate new explanation for nano-bio-mechanical movements in BFSA minimalist murburn model for the bacterial flagella-aided movement is proposedCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu, The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vivian David Jacob
- Satyamjayatu, The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Belgium
| | - Vidhu Soman
- Department of Bioscience & Bioengineering, IIT Bombay (& DSS Imagetech Pvt. Ltd), Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Sensitive bacterial V m sensors revealed the excitability of bacterial V m and its role in antibiotic tolerance. Proc Natl Acad Sci U S A 2023; 120:e2208348120. [PMID: 36623202 PMCID: PMC9934018 DOI: 10.1073/pnas.2208348120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As an important free energy source, the membrane voltage (Vm) regulates many essential physiological processes in bacteria. However, in comparison with eukaryotic cells, knowledge of bacterial electrophysiology is very limited. Here, we developed a set of novel genetically encoded bacterial Vm sensors which allow single-cell recording of bacterial Vm dynamics in live cells with high temporal resolution. Using these new sensors, we reveal the electrically "excitable" and "resting" states of bacterial cells dependent on their metabolic status. In the electrically excitable state, frequent hyperpolarization spikes in bacterial Vm are observed, which are regulated by Na+/K+ ratio of the medium and facilitate increased antibiotic tolerance. In the electrically resting state, bacterial Vm displays significant cell-to-cell heterogeneity and is linked to the cell fate after antibiotic treatment. Our findings demonstrate the potential of our newly developed voltage sensors to reveal the underpinning connections between bacterial Vm and antibiotic tolerance.
Collapse
|
11
|
Schwanbeck J, Oehmig I, Groß U, Bohne W. Clostridioides difficile minimal nutrient requirements for flagellar motility. Front Microbiol 2023; 14:1172707. [PMID: 37065145 PMCID: PMC10098170 DOI: 10.3389/fmicb.2023.1172707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
As many gastro-intestinal pathogens, the majority of Clostridioides difficile strains express flagella together with a complete chemotaxis system. The resulting swimming motility is likely contributing to the colonization success of this important pathogen. In contrast to the well investigated general energy metabolism of C. difficile, little is known about the metabolic requirements for maintaining the ion motive force across the membrane, which in turn powers the flagellar motor. We studied here systematically the effect of various amino acids and carbohydrates on the swimming velocity of C. difficile using video microscopy in conjunction with a software based quantification of the swimming speed. Removal of individual amino acids from the medium identified proline and cysteine as the most important amino acids that power swimming motility. Glycine, which is as proline one of the few amino acids that are reduced in Stickland reactions, was not critical for swimming motility. This suggests that the ion motive force that powers the flagellar motor, is critically depending on proline reduction. A maximal and stable swimming motility was achieved with only four compounds, including the amino acids proline, cysteine and isoleucine together with a single, but interchangeable carbohydrate source such as glucose, succinate, mannose, ribose, pyruvate, trehalose, or ethanolamine. We expect that the identified "minimal motility medium" will be useful in future investigations on the flagellar motility and chemotactic behavior in C. difficile, particularly for the unambiguous identification of chemoattractants.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ines Oehmig
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Uwe Groß,
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- *Correspondence: Wolfgang Bohne,
| |
Collapse
|
12
|
Kühn MJ, Edelmann DB, Thormann KM. Polar flagellar wrapping and lateral flagella jointly contribute to Shewanella putrefaciens environmental spreading. Environ Microbiol 2022; 24:5911-5923. [PMID: 35722744 DOI: 10.1111/1462-2920.16107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023]
Abstract
Flagella enable bacteria to actively spread within the environment. A number of species possess two separate flagellar systems, where in most cases a primary polar flagellar system is supported by distinct secondary lateral flagella under appropriate conditions. Using functional fluorescence tagging on one of these species, Shewanella putrefaciens, as a model system, we explored how two different flagellar systems can exhibit efficient joint function. The S. putrefaciens secondary flagellar filaments are composed as a mixture of two highly homologous non-glycosylated flagellins, FlaA2 and FlaB2 . Both are solely sufficient to form a functional filament, however, full spreading motility through soft agar requires both flagellins. During swimming, lateral flagella emerge from the cell surface at angles between 30° and 50°, and only filaments located close to the cell pole may form a bundle. Upon a directional shift from forward to backward swimming initiated by the main polar flagellum, the secondary filaments flip over and thus support propulsion into either direction. Lateral flagella do not inhibit the wrapping of the polar flagellum around the cell body at high load. Accordingly, screw thread-like motility mediated by the primary flagellum and activity of lateral flagella cumulatively supports spreading through constricted environments such as polysaccharide matrices.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany.,Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel B Edelmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
13
|
Melkikh AV, Bondar VV. Mechanisms and models of movement of protocells and bacteria in the early stages of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:3-13. [PMID: 35987420 DOI: 10.1016/j.pbiomolbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
A review of the physicochemical models of the movement of protocells and bacteria was performed. The mechanisms of gliding and movement based on flagella are considered. Based on the models, the average speed of movement of protocells and bacteria was calculated. A physicochemical model of bacterial gliding was constructed. The efficiency of the process of converting the energy of ATP into the energy of motion is estimated. A review of models of movement with the help of flagella was performed. A model has been constructed for converting ATP energy into proton and sodium motive forces, which, in turn, are converted into energy of rotor rotation. The problem of the accuracy of operation of nanomachines, on the basis of which the directed movement of bacteria occurs, is discussed. The considered models can be applied to create nanomotors for medical purposes.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| | - V V Bondar
- Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
14
|
Homma M, Kojima S. The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation. Front Microbiol 2022; 13:869187. [PMID: 35572622 PMCID: PMC9093738 DOI: 10.3389/fmicb.2022.869187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
The bacterial flagellar stator is a unique ion-conducting membrane protein complex composed of two kinds of proteins, the A subunit and the B subunit. The stator couples the ion-motive force across the membrane into rotational force. The stator becomes active only when it is incorporated into the flagellar motor. The periplasmic region of the B subunit positions the stator by using the peptidoglycan-binding (PGB) motif in its periplasmic C-terminal domain to attach to the cell wall. Functional studies based on the crystal structures of the C-terminal domain of the B subunit (MotBC or PomBC) reveal that a dramatic conformational change in a characteristic α-helix allows the stator to conduct ions efficiently and bind to the PG layer. The plug and the following linker region between the transmembrane (TM) and PG-binding domains of the B subunit function in regulating the ion conductance. In Vibrio spp., the transmembrane protein FliL and the periplasmic MotX and MotY proteins also contribute to the motor function. In this review, we describe the functional and structural changes which the stator units undergo to regulate the activity of the stator to drive flagellar rotation.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Perez-Carrasco R, Franco-Oñate MJ, Walter JC, Dorignac J, Geniet F, Palmeri J, Parmeggiani A, Walliser NO, Nord AL. Relaxation time asymmetry in stator dynamics of the bacterial flagellar motor. SCIENCE ADVANCES 2022; 8:eabl8112. [PMID: 35319986 PMCID: PMC8942351 DOI: 10.1126/sciadv.abl8112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The bacterial flagellar motor is the membrane-embedded rotary motor, which turns the flagellum that provides thrust to many bacteria. This large multimeric complex, composed of a few dozen constituent proteins, is a hallmark of dynamic subunit exchange. The stator units are inner-membrane ion channels that dynamically bind to the peptidoglycan at the rotor periphery and apply torque. Their dynamic exchange is a function of the viscous load on the flagellum, allowing the bacterium to adapt to its local environment, although the molecular mechanisms of mechanosensitivity remain unknown. Here, by actively perturbing the steady-state stator stoichiometry of individual motors, we reveal a stoichiometry-dependent asymmetry in stator remodeling kinetics. We interrogate the potential effect of next-neighbor interactions and local stator unit depletion and find that neither can explain the observed asymmetry. We then simulate and fit two mechanistically diverse models that recapitulate the asymmetry, finding assembly dynamics to be particularly well described by a two-state catch-bond mechanism.
Collapse
Affiliation(s)
| | | | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Fred Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Nils-Ole Walliser
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|