1
|
Li X, Basak B, Tanpure RS, Zheng X, Jeon BH. Unraveling the genetic basis of microbial metal resistance: Shift from mendelian to systems biology. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138350. [PMID: 40280066 DOI: 10.1016/j.jhazmat.2025.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Microbial metal resistance, a trait that enables microorganisms to withstand high levels of toxic metals, has been studied for over a century. The significance of uncovering these mechanisms goes beyond basic science as they have implications for human health through their connection to microbial pathogenesis, metal bioremediation, and biomining. Recent advances in analytical chemistry and molecular biology have accelerated the discovery and understanding of genetic mechanisms underlying microbial metal resistance, identifying specific metal resistance genes and their operons. The emergence of omics tools has further propelled research towards a comprehensive understanding of how cells respond to metal stress at the systemic level, revealing the complex regulatory networks and evolutionary dynamics that drive microbial adaptation to metal-rich environments. In this article, we present a historical overview of the evolving understanding of the genetic determinants of metal resistance in microbes. Through multiple narrative threads, we illustrate how our knowledge of microbial metal resistance and genetics has interacted with genetic tools and concept development. This review also discusses how our understanding of microbial metal resistance has progressed from the Mendelian perspective to the current systems biology viewpoint, particularly as omics approaches have considerably enhanced our understanding. This system-level understanding has opened new possibilities for genetically engineered microorganisms to regulate metal homeostasis.
Collapse
Affiliation(s)
- Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Bikram Basak
- Center for Creative Convergence Education, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Rahul S Tanpure
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Xin Zheng
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Xie X, Yin S, Zhang X, Tian Q, Zeng Y, Zhang X. Boron-dependent autoinducer-2-mediated quorum sensing stimulates the Cr(VI) reduction of Leucobacter chromiireducens CD49. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124290. [PMID: 39862834 DOI: 10.1016/j.jenvman.2025.124290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.0 mg/L Cr(VI), and reduce 92.7% of 100.0 mg/L Cr(VI) within 66 h. Kinetic models were developed to determine the arithmetic relationships between Cr(VI) concentration and reaction time, and X-ray photoelectron spectroscopy exhibited the co-occurrence of Cr(III) and Cr(VI) on the bacterial cell surface. Furthermore, an integrated genomic-transcriptomic study was employed to explore the genetic-level response of strain CD49 to Cr(VI) stress, and most differentially expressed genes in the Cr(VI)-treatment group were enriched in biological process-related pathways, especially in quorum sensing (QS). Under the optimal conditions based on Box-Behnken Design experiments, intriguingly, boron-dependent autoinducer-2 (AI-2)-mediated QS was stimulated after H3BO3 introduction to further improve the biofilm production, biomass, and Cr(VI) reduction efficiency of strain CD49. Additionally, significantly up-regulated expression of genes chrR, chrA, and luxS further indicated the positive effect of AI-2-mediated QS on Cr(VI) reduction. Collectively, the findings pioneeringly present a chain of evidence for QS-stimulated Cr(VI) reduction, which may provide a theoretical basis for future improvement of microbial-mediated Cr(VI) remediation.
Collapse
Affiliation(s)
- Xinger Xie
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Shiqian Yin
- Hunan Vocational College of Engineering, Changsha, China.
| | - Xuan Zhang
- Hunan Academy of Forestry, Changsha, China.
| | - Qibai Tian
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Ying Zeng
- Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
3
|
Monga A, Fulke AB, Sonker S, Dasgupta D. Unveiling the chromate stress response in the marine bacterium Bacillus enclensis AGM_Cr8: a multifaceted investigation. World J Microbiol Biotechnol 2024; 40:394. [PMID: 39586856 DOI: 10.1007/s11274-024-04206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
In this study, we introduce Bacillus enclensis AGM_Cr8, a gram-positive marine bacterium isolated from the chronically polluted Versova Creek in Mumbai, India. AGM_Cr8 exhibits robust tolerance to chromate stress, thriving in marine agar media containing up to 3200 mg/l of hexavalent chromium [Cr(VI)], with the Minimum Inhibitory Concentration (MIC) established at 5000 mg/l. Notably, AGM_Cr8 also displays tolerance to other heavy metals, including Lead [Pb (II)] (1200 mg/l), Arsenic [As (III)] (400 mg/l), Cadmium [Cd(II)] (100 mg/l), and Nickel [Ni(II)] (100 mg/l). Scanning Electron Microscopy (SEM) reveals the presence of Cr(VI) on the bacterial surface, accompanied by the secretion of extracellular polymeric substances (EPSs) facilitating Cr(VI) sequestration. This observation is validated through Energy Dispersive Spectroscopy (EDS). Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy (STEM-EDS) confirm internal bioaccumulation of Cr(VI). X-ray photoelectron spectroscopy (XPS) identifies distinct peaks around 579 and 576 eV, indicating the coexistence of Cr(VI) and Cr(III), implying a bioreduction mechanism. De novo genome sequencing identifies twenty-two chromate-responsive genes, including putative chromate transporters (srpC1 and srpC2), suggesting an efflux mechanism. Other identified genes encode NAD(P)H-dependent FMN-containing oxidoreductase, NADH quinone reductase, ornithine aminotransferase, transporter genes (natA, natB, ytrB), and genes related to DNA replication and repair (recF), DNA mismatch repair (mutH), and superoxide dismutase. We therefore, propose a chromate detoxification pathway that involves an interplay of chromate transporters, enzymatic reduction of Cr(VI) to Cr(III), DNA repair and role of antioxidants in response to chromate stress. We have highlighted the potential of AGM_Cr8 for bioremediation in chromium-contaminated environments, given its robust tolerance and elucidated molecular mechanisms for detoxification.
Collapse
Affiliation(s)
- Aashna Monga
- Microbiology Division CSIR- National Institute of Oceanography (NIO), Regional Centre, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India
| | - Abhay B Fulke
- Microbiology Division CSIR- National Institute of Oceanography (NIO), Regional Centre, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Swati Sonker
- Microbiology Division CSIR- National Institute of Oceanography (NIO), Regional Centre, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debjani Dasgupta
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India
| |
Collapse
|
4
|
Su X, Fang T, Fang L, Wang D, Jiang X, Liu C, Zhang H, Guo R, Wang J. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can J Microbiol 2023; 69:464-478. [PMID: 37463516 DOI: 10.1139/cjm-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In our study, Bacillus subtilis was disposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14 days, while the control group was disposed to the same bioreactors in a normal gravity (NG) environment for 14 days. The B. subtilis strain exposed to the SMG (labeled BSS) showed an enhanced growth ability, increased biofilm formation ability, increased sensitivity to ampicillin sulbactam and cefotaxime, and some metabolic alterations compared with the B. subtilis strain under NG conditions (labeled BSN) and the original strain of B. subtilis (labeled BSO). The differentially expressed proteins (DEPs) associated with an increased growth rate, such as DNA strand exchange activity, oxidoreductase activity, proton-transporting ATP synthase complex, and biosynthetic process, were significantly upregulated in BSS. The enhanced biofilm formation ability may be related with the DEPs of spore germination and protein processing in BSS, and differentially expressed genes involved in protein localization and peptide secretion were also significantly enriched. The results revealed that SMG may increase the level of related functional proteins by upregulating or downregulating affiliated genes to change physiological characteristics and modulate growth ability, biofilm formation ability (epsB, epsC, epsN), antibiotic sensitivity (penP) and metabolism. Our experiment may gives new ideas for the study of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Tingzheng Fang
- Sixth Department of Health Care, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lin Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Dapeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Honglei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Rui Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Hu X, Qian Y, Gao Z, Li G, Fu F, Guo J, Shan Y. Safety evaluation and whole genome sequencing for revealing the ability of Penicillium oxalicum WX-209 to safely and effectively degrade citrus segments. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Hu S, Zhu R, Yu XY, Wang BT, Ruan HH, Jin FJ. A High-Quality Genome Sequence of the Penicillium oxalicum 5-18 Strain Isolated from a Poplar Plantation Provides Insights into Its Lignocellulose Degradation. Int J Mol Sci 2023; 24:12745. [PMID: 37628925 PMCID: PMC10454814 DOI: 10.3390/ijms241612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.H.); (R.Z.); (X.-Y.Y.); (B.-T.W.); (H.-H.R.)
| |
Collapse
|
7
|
Senabio JA, de Campos Pereira F, Pietro-Souza W, Sousa TF, Silva GF, Soares MA. Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz J Microbiol 2023; 54:949-964. [PMID: 36857007 PMCID: PMC10235320 DOI: 10.1007/s42770-023-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Mercury is a non-essential and toxic metal that induces toxicity in most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to metal contaminants and other environmental stressors. The present study demonstrated the potential of mercury-resistant endophytic fungi in phytoremediation. We examined the functional traits involved in plant growth promotion, phytotoxicity mitigation, and mercury phytoremediation in seven fungi strains. The endophytic isolates synthesized the phytohormone indole-3-acetic acid, secreted siderophores, and solubilized phosphate in vitro. Inoculation of maize (Zea mays) plants with endophytes increased plant growth attributes by up to 76.25%. The endophytic fungi stimulated mercury uptake from the substrate and promoted its accumulation in plant tissues (t test, p < 0.05), preferentially in the roots, which thereby mitigated the impacts of metal phytotoxicity. Westerdykella aquatica P71 and the newly identified species Pseudomonodictys pantanalensis nov. A73 were the isolates that presented the best phytoremediation potential. Assembling and annotation of P. pantanalensis A73 and W. aquatica P71 genomes resulted in genome sizes of 45.7 and 31.8 Mb that encoded 17,774 and 11,240 protein-coding genes, respectively. Some clusters of genes detected were involved in the synthesis of secondary metabolites such as dimethylcoprogen (NRPS) and melanin (T1PKS), which are metal chelators with antioxidant activity; mercury resistance (merA and merR1); oxidative stress (PRX1 and TRX1); and plant growth promotion (trpS and iscU). Therefore, both fungi species are potential tools for the bioremediation of mercury-contaminated soils due to their ability to reduce phytotoxicity and assist phytoremediation.
Collapse
Affiliation(s)
- Jaqueline Alves Senabio
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900 Brazil
| | | | - William Pietro-Souza
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900 Brazil
| | | | | | - Marcos Antônio Soares
- Federal University of Mato Grosso UFMT, Av. Fernando Corrêa da Costa, no 2367 Distrito Boa Esperança, Cuiabá, Mato Grosso CEP 78060-900 Brazil
| |
Collapse
|
8
|
Zhao F, Saleem M, Xie Z, Wei X, He T, He G. Sensitive or tolerant functional microorganisms under cadmium stress: suggesting potential specific interaction network characteristics in the rhizosphere system of karst potato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55932-55947. [PMID: 36913018 DOI: 10.1007/s11356-023-26115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal cadmium (Cd) pollution in Chinese karst soils threatens food security, and microorganisms play an important role in regulating the migration and transformation of Cd in the soil-plant system. Nevertheless, the interaction characteristics between key microbial communities and environmental factors in response to Cd stress in specific crop environmental systems need to be explored. In this study, the soil (ferralsols)-microbe-crop (potato) system was taken as the object to explore the potato rhizosphere microbiome, using toxicology and molecular biology approaches, to explore the potato rhizosphere soil properties, microbial stress characteristics, and important microbial taxa under Cd stress. We hypothesized that different members of fungal and bacterial microbiome would regulate the resilience of potato rhizosphere and plants to Cd stress in the soil environment. Meanwhile, individual taxa will have different roles in the contaminated rhizosphere ecosystem. We found that soil pH was the main environmental factor affecting fungal community structure; urea-decomposing and nitrate-reducing functional bacteria as well as endosymbiotic and saprophytic functional fungi gradually decreased. In particular, Basidiomycota may play a key role in preventing the migration of Cd from the soil to plants (potato). These findings provide important candidates for screening the cascade of Cd inhibition (detoxification/regulation) from soil to microorganisms to plants. Our work provides an important foundation and research insights for the application of microbial remediation technology in the karst cadmium-contaminated farmland.
Collapse
Affiliation(s)
- Fulin Zhao
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhao Xie
- Soil and Fertilizer Station of Guizhou Province, Guiyang, People's Republic of China
| | - Xiaoliao Wei
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
- Institute of New Rural Development of Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
9
|
Gao Y, Jiang X, Wu H, Tong J, Ren X, Ren J, Wu Q, Ye J, Li C, Shi J. Colonization of Penicillium oxalicum SL2 in Pb-contaminated paddy soil and its immobilization effect on soil Pb. J Environ Sci (China) 2022; 120:53-62. [PMID: 35623772 DOI: 10.1016/j.jes.2021.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 06/15/2023]
Abstract
Penicillium oxalicum SL2 (SL2) is a previously screened Pb-tolerant fungus that can promote crops growth. The relationship between SL2 colonization and Pb immobilization was studied to provide a theoretical basis for microbial remediation of Pb-contaminated paddy soil. In this study, green fluorescent protein (GFP) labeled SL2 was inoculated into different Pb-contaminated paddy soils (S1-S6). The Pb extracted from the soil by HNO3, EDTA and CaCl2 were used to characterize the available Pb. The results showed that the colonization of SL2 was divided into lag phase (0-7 days), growth phase (7-30 days), and mortality phase (30-90 days). SL2 colonized well in sandy soils rich in clay and total phosphorus with initial pH of 4.5-7.0. In addition, SL2 increased soil pH and decreased soil Eh, which was beneficial to immobilize Pb. In different soils, the highest percentages of CaCl2-Pb, EDTA-Pb, and HNO3-Pb immobilized by SL2 were 34.34%-40.53%, 17.05%-20.11%, and 7.39%-15.62%, respectively. Pearson correlation analysis showed that the percentages of CaCl2-Pb and EDTA-Pb immobilized by SL2 were significantly positively correlated with the number of SL2 during the growth phase. SL2 mainly immobilized Pb in the growth phase and a higher peak number of SL2 was beneficial to the immobilization of Pb.
Collapse
Affiliation(s)
- Yu Gao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Qianhua Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Li
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Xu Q, Jiang X, Tong J, Wu H, Luo Y, Shi J. Penicillium oxalicum SL2 as a sustainable option to mitigate the accumulation of Pb in rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153769. [PMID: 35157865 DOI: 10.1016/j.scitotenv.2022.153769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/09/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal contamination in agricultural soil and its associated risk of food safety are of great concern globally. It is therefore an urgent need to develop sustainable option to mitigate the accumulation of metals in crop plants. Here we investigated the potential of phosphorus-solubilizing fungus, Penicillium oxalicum SL2, on regulating the bioavailability of Pb in a lead (Pb) polluted soil-rice system. Our results showed that the content of Pb in rice grain was significantly decreased by ~80% with the application of P. oxalicum SL2. The competition between oxalate and phosphate for the complexation of Pb showed to be effective in mediating the bioavailability of Pb, and such impact varied with water fluctuation in paddy soil. The solubilization of phosphorus also played an important role in alleviating the dissolution of iron plaque caused by oxalic acid, which helped maintaining the biomass of iron plaque as a barrier to the uptake of Pb by root. The predominant indigenous microbial community was not affected by the inoculation with P. oxalicum SL2, suggesting it as an eco-friendly strain. Therefore, we suggest P. oxalicum SL2 as a promising fungus in enhancing the safe use of moderately Pb polluted paddy soil for safe rice.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|
12
|
Su X, Guo Y, Fang T, Jiang X, Wang D, Li D, Bai P, Zhang B, Wang J, Liu C. Effects of Simulated Microgravity on the Physiology of Stenotrophomonas maltophilia and Multiomic Analysis. Front Microbiol 2021; 12:701265. [PMID: 34512577 PMCID: PMC8429793 DOI: 10.3389/fmicb.2021.701265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that the space environment plays a pivotal role in changing the characteristics of conditional pathogens, especially their pathogenicity and virulence. However, Stenotrophomonas maltophilia, a type of conditional pathogen that has shown to a gradual increase in clinical morbidity in recent years, has rarely been reported for its impact in space. In this study, S. maltophilia was exposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14days, while the control group was exposed to the same bioreactors in a normal gravity (NG) environment. Then, combined phenotypic, genomic, transcriptomic, and proteomic analyses were conducted to compare the influence of the SMG and NG on S. maltophilia. The results showed that S. maltophilia in simulated microgravity displayed an increased growth rate, enhanced biofilm formation ability, increased swimming motility, and metabolic alterations compared with those of S. maltophilia in normal gravity and the original strain of S. maltophilia. Clusters of Orthologous Groups (COG) annotation analysis indicated that the increased growth rate might be related to the upregulation of differentially expressed genes (DEGs) involved in energy metabolism and conversion, secondary metabolite biosynthesis, transport and catabolism, intracellular trafficking, secretion, and vesicular transport. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the increased motility might be associated the upregulation of differentially expressed proteins (DEPs) involved in locomotion, localization, biological adhesion, and binding, in accordance with the upregulated DEGs in cell motility according to COG classification, including pilP, pilM, flgE, flgG, and ronN. Additionally, the increased biofilm formation ability might be associated with the upregulation of DEPs involved in biofilm formation, the bacterial secretion system, biological adhesion, and cell adhesion, which were shown to be regulated by the differentially expressed genes (chpB, chpC, rpoN, pilA, pilG, pilH, and pilJ) through the integration of transcriptomic and proteomic analyses. These results suggested that simulated microgravity might increase the level of corresponding functional proteins by upregulating related genes to alter physiological characteristics and modulate growth rate, motility, biofilm formation, and metabolism. In conclusion, this study is the first general analysis of the phenotypic, genomic, transcriptomic, and proteomic changes in S. maltophilia under simulated microgravity and provides some suggestions for future studies of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yinghua Guo
- Medical School of Chinese PLA, Beijing, China.,College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tingzheng Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Dapeng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Department of Academic Research, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|