1
|
Arrieta MC. Microbiome Maturation Trajectory and Key Milestones in Early Life. ANNALS OF NUTRITION & METABOLISM 2025:1-8. [PMID: 40228484 DOI: 10.1159/000543754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/30/2024] [Indexed: 04/16/2025]
Abstract
BACKGROUND The development of the gut microbiome during early life plays a critical role in shaping long-term health. The first 1,000 days represent a crucial period in which the microbiome is particularly malleable, influenced by various factors such as birth mode, diet, antibiotic exposure, and environmental interactions. SUMMARY This review outlines the key stages of microbiome maturation, beginning with initial colonization at birth and progressing through the diversification and stabilization phases during the first 5 years of life. Factors like breastfeeding, the introduction of solid foods, and early-life antibiotic have a critical impact on microbial diversity and immune system development. Disruptions to the microbiome during this critical window, particularly through antibiotic use, are associated with an increased risk of immune, metabolic, and neurodevelopmental disorders. Recent research emphasizes the need for a better understanding of these early-life trajectories to inform interventions that promote a healthy microbiome.
Collapse
Affiliation(s)
- Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Toubon G, Patin C, Delannoy J, Rozé JC, Barbut F, Ancel PY, Charles MA, Butel MJ, Lepage P, Aires J. Very preterm gut microbiota development from the first week of life to 3.5 years of age: a prospective longitudinal multicenter study. Microbiol Spectr 2025; 13:e0163624. [PMID: 39969235 PMCID: PMC11960047 DOI: 10.1128/spectrum.01636-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
This study analyzed the longitudinal evolution of intestinal microbiota in very preterm neonates (PN) during and after their hospitalization. The bacterial 16S rRNA gene sequencing approach was applied for the analysis of fecal samples (n = 1,307) from 596 PN. Samples were collected at one week after birth, at one month, at the neonatal intensive care unit discharge, and at 3.5 years of age. Over time, the intestinal microbiota of the infants matured progressively, with increasing alpha diversity and decreasing beta diversity. Based on a Dirichlet multinomial mixture clustering approach (DMM), during hospitalization, infants progressed among ten different clusters. At 3.5 years of age, only three clusters were identified. The influence of the gestational age, the neonatal antibiotic administration, and the maternal antibiotic therapy during delivery on the gut microbiota varied over time and depended on the sampling period. Preconceptional maternal body mass index (BMI) was associated with the gut microbiota of infants during the hospitalization period and at 3.5 years of age. Infants with a lower gestational age or those born by Cesarean section shifted between clusters more frequently. Using PICRUSt2, the inferred metabolic pathways revealed a change in the functional capacities of the intestinal microbiota over time. We found that preconceptional maternal BMI was the only consistent perinatal factor influencing the development of the gut microbiota over time. After hospital discharge, infants exhibited a transition toward a microbiota community similar to that of adults by 3.5 years of age, in accordance with the functional metabolic pathways of the gut microbiota.IMPORTANCEThis study is among the very few reports analyzing the gut microbiota development in very preterm infants over time in a large, multicenter population of 596 children from a well-described nationwide birth cohort, with a follow-up until the age of 3.5 years. The maturation of the intestinal microbiota was confirmed to occur over time, with increased alpha diversity and decreased beta diversity. Specifically, 13 microbiota clusters were identified during the hospitalization period, while and only three clusters were observed at 3.5 years. Infants born prematurely or via Cesarean section exhibited a less stable microbiota, frequently shifting clusters. A number of perinatal factors were identified as influencing the development of the microbiota. Among these, the preconceptional maternal BMI emerged as the only consistent factor up to 3.5 years. The metabolic pathways of the microbiota evolved over time, in accordance with the maturation of the gut microbiota.
Collapse
Affiliation(s)
- Gaël Toubon
- INSERM, UMR1153 Centre de Recherche Épidémiologie et StatistiqueS (CRESS), Université Paris Cité, Paris, France
- INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal, Université Paris Cité,, Paris, France
- FHU PREMA, “Fighting Prematurity”, Paris, France
| | - Constance Patin
- INRAE, UMR 1319, AgrosParisTech, Institut Micalis, Université Paris-Saclay, Paris, France
| | - Johanne Delannoy
- INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal, Université Paris Cité,, Paris, France
- FHU PREMA, “Fighting Prematurity”, Paris, France
| | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Université Hospitalière de Nantes, Nantes, France
| | - Frédéric Barbut
- INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal, Université Paris Cité,, Paris, France
- FHU PREMA, “Fighting Prematurity”, Paris, France
| | - Pierre-Yves Ancel
- INSERM, UMR1153 Centre de Recherche Épidémiologie et StatistiqueS (CRESS), Université Paris Cité, Paris, France
- FHU PREMA, “Fighting Prematurity”, Paris, France
| | - Marie-Aline Charles
- INSERM, UMR1153 Centre de Recherche Épidémiologie et StatistiqueS (CRESS), Université Paris Cité, Paris, France
| | - Marie-José Butel
- INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal, Université Paris Cité,, Paris, France
- FHU PREMA, “Fighting Prematurity”, Paris, France
| | - Patricia Lepage
- INRAE, UMR 1319, AgrosParisTech, Institut Micalis, Université Paris-Saclay, Paris, France
| | - Julio Aires
- INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal, Université Paris Cité,, Paris, France
- FHU PREMA, “Fighting Prematurity”, Paris, France
| |
Collapse
|
3
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
5
|
Strunk T, Molloy EJ, Mishra A, Bhutta ZA. Neonatal bacterial sepsis. Lancet 2024; 404:277-293. [PMID: 38944044 DOI: 10.1016/s0140-6736(24)00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 07/01/2024]
Abstract
Neonatal sepsis remains one of the key challenges of neonatal medicine, and together with preterm birth, causes almost 50% of all deaths globally for children younger than 5 years. Compared with advances achieved for other serious neonatal and early childhood conditions globally, progress in reducing neonatal sepsis has been much slower, especially in low-resource settings that have the highest burden of neonatal sepsis morbidity and mortality. By contrast to sepsis in older patients, there is no universally accepted neonatal sepsis definition. This poses substantial challenges in clinical practice, research, and health-care management, and has direct practical implications, such as diagnostic inconsistency, heterogeneous data collection and surveillance, and inappropriate treatment, health-resource allocation, and education. As the clinical manifestation of neonatal sepsis is frequently non-specific and the current diagnostic standard blood culture has performance limitations, new improved diagnostic techniques are required to guide appropriate and warranted antimicrobial treatment. Although antimicrobial therapy and supportive care continue as principal components of neonatal sepsis therapy, refining basic neonatal care to prevent sepsis through education and quality improvement initiatives remains paramount.
Collapse
Affiliation(s)
- Tobias Strunk
- Neonatal Directorate, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, WA, Australia; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, University of Dublin and Trinity Research in Childhood Centre, Dublin, Ireland; Children's Health Hospital at Tallaght, Tallaght University Hospital, Dublin, Ireland; Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland; Neonatology, Children's Health Hospital at Crumlin, Dublin, Ireland; Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| | - Archita Mishra
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada; Institute for Global Health and Development, The Aga Khan University South-Central Asia, Karachi, Pakistan
| |
Collapse
|
6
|
Tan X, Liu H, Qiu W, Li Z, Ge S, Luo Y, Zeng N, Chen M, Zhou Q, Cai S, Long J, Cen Z, Su J, Zhou H, He X. The nasal microbiota is a potential diagnostic biomarker for sepsis in critical care units. Microbiol Spectr 2024; 12:e0344123. [PMID: 38864649 PMCID: PMC11218442 DOI: 10.1128/spectrum.03441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
This study aimed to characterize the composition of intestinal and nasal microbiota in septic patients and identify potential microbial biomarkers for diagnosis. A total of 157 subjects, including 89 with sepsis, were enrolled from the affiliated hospital. Nasal swabs and fecal specimens were collected from septic and non-septic patients in the intensive care unit (ICU) and Department of Respiratory and Critical Care Medicine. DNA was extracted, and the V4 region of the 16S rRNA gene was amplified and sequenced using Illumina technology. Bioinformatics analysis, statistical processing, and machine learning techniques were employed to differentiate between septic and non-septic patients. The nasal microbiota of septic patients exhibited significantly lower community richness (P = 0.002) and distinct compositions (P = 0.001) compared to non-septic patients. Corynebacterium, Staphylococcus, Acinetobacter, and Pseudomonas were identified as enriched genera in the nasal microbiota of septic patients. The constructed machine learning model achieved an area under the curve (AUC) of 89.08, indicating its efficacy in differentiating septic and non-septic patients. Importantly, model validation demonstrated the effectiveness of the nasal microecological diagnosis prediction model with an AUC of 84.79, while the gut microecological diagnosis prediction model had poor predictive performance (AUC = 49.24). The nasal microbiota of ICU patients effectively distinguishes sepsis from non-septic cases and outperforms the gut microbiota. These findings have implications for the development of diagnostic strategies and advancements in critical care medicine.IMPORTANCEThe important clinical significance of this study is that it compared the intestinal and nasal microbiota of sepsis with non-sepsis patients and determined that the nasal microbiota is more effective than the intestinal microbiota in distinguishing patients with sepsis from those without sepsis, based on the difference in the lines of nasal specimens collected.
Collapse
Affiliation(s)
- XiLan Tan
- Division of Infection Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, The department of laboratory medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wen Qiu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewen Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Ge
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuemei Luo
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Manjun Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiqi Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shumin Cai
- Department of Intensive Care Medicine, Nanfang Hospital, Southern Medical University, Guagnzhou, China
| | - Jun Long
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongran Cen
- Division of Intensive Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Su
- Chronic Airways Diseases Laboratory, Department of Respiratory & Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Qi Q, Wang L, Zhu Y, Li S, Gebremedhin MA, Wang B, Zhu Z, Zeng L. Unraveling the Microbial Symphony: Impact of Antibiotics and Probiotics on Infant Gut Ecology and Antibiotic Resistance in the First Six Months of Life. Antibiotics (Basel) 2024; 13:602. [PMID: 39061284 PMCID: PMC11274100 DOI: 10.3390/antibiotics13070602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to examine the effects of antibiotic and probiotic usage on the gut microbiota structure and the presence of antibiotic-resistance genes (ARGs) in infants during the first six months of life. Questionnaires and fecal samples were collected within three days of birth, two months, and six months to assess antibiotic and probiotic exposure. Gut microbiotas were sequenced via 16S rRNA, and ARGs were conducted by qPCR, including beta-lactam (mecA, blaTEM), tetracycline (tetM), fluoroquinolone (qnrS), aminoglycoside (aac(6')-Ib), and macrolide (ermB). Infants were categorized by antibiotic and probiotic usage and stratified by delivery mode, microbial composition, and ARG abundances were compared, and potential correlations were explored. A total of 189 fecal samples were analyzed in this study. The gut microbiota diversity (Chao1 index) was significantly lower in the "only probiotics" (PRO) group compared to the "neither antibiotics nor probiotics" (CON) group at six months for the CS stratification (p = 0.029). Compositionally, the abundance of core genus Bifidobacterium_pseudocatenulatum was less abundant for the antibiotic during delivery (IAP) group than that in the CON group within the first three days (p = 0.009), while core genus Enterococcus_faecium was more abundant in the PRO than that in the CON group (p = 0.021) at two months. ARGs were highly detected, with Enterococcus hosting tetM and Escherichia associated with blaTEM within three days of birth, though no correlation was found between Bifidobacterium and ARGs. These findings emphasized the critical importance of carefully managing antibiotic and probiotic exposures in early life, with implications for promoting lifelong health through preserving a healthy infant gut ecosystem.
Collapse
Affiliation(s)
- Qi Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Liang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Yingze Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Shaoru Li
- Experimental Teaching Center, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mitslal Abrha Gebremedhin
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Baozhu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
- Department of Health, Northwest Women’s and Children’s Hospital, Xi’an 710003, China
| | - Zhonghai Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Lingxia Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
- Center for Chronic Disease Control and Prevention, Global Health Institution, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
8
|
Wawrzoniak T, Romańska J. Effect of Serial Clinical Observation Complemented by Point-of-Care Blood Culture Volume Verification on Antibiotic Exposure in Newborns. Glob Pediatr Health 2024; 11:2333794X231226057. [PMID: 38269318 PMCID: PMC10807344 DOI: 10.1177/2333794x231226057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Objective. This study evaluated the effects of serial clinical observation strategy complemented by point-of-care verification of blood culture volume in managing term and near-term newborns at risk for early-onset sepsis. Methods. We used a "before-and-after" approach. Infants born at ≥35 0/7 weeks' gestation were eligible. Our strategy was based on serial clinical observation complemented with point-of-care verification of blood culture volume. Two separate 12-month periods were analyzed. The number of infants exposed to antibiotics started during the first 3 days of life was compared before and after introducing the strategy. Results. During the post-intervention period, 0.6% of infants received antibiotic therapy, compared to 4.1% during the pre-intervention period (P < .001; relative risk [RR]: 0.15; 95% CI: 0.08-0.28). Conclusion. Serial clinical observation complemented with verification of blood culture volume might reduce antibiotic utilization in newborns in the early postnatal period.
Collapse
|
9
|
Kilic Yildirim G, Dinleyici M, Vandenplas Y, Dinleyici EC. Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial). Gut Pathog 2023; 15:36. [PMID: 37474971 PMCID: PMC10360342 DOI: 10.1186/s13099-023-00563-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Gut microbiota manipulation may be a potential therapeutic target to reduce host energy storage. There is limited information about the effects of probiotics/synbiotics on intestinal microbiota composition in children and adolescents with obesity. The objective of this randomized double-blind placebo-controlled trial was to test the effects of a multispecies synbiotic on intestinal microbiota composition in children and adolescents with exogenous obesity. METHOD Children with exogenous obesity were managed with a standard diet and increased physical activity and were randomly allocated into two groups at a ratio of 1:1; the 1st group received synbiotic supplementation (probiotic mixture including Lactobacillus acidophilus, Lacticaseibacillus. rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Enterococcus faecium (total 2.5 × 109 CFU/sachet) and fructo-oligosaccharides (FOS; 625 mg/sachet) for 12 weeks; the 2nd group received placebo once daily for 12 weeks. Fecal samples were obtained before and at the end of the 12-week intervention to characterize the changes in the gut microbiota composition. Detailed metagenomic and bioinformatics analyses were performed. RESULTS Before the intervention, there were no significant differences in alpha diversity indicators between the synbiotic and placebo groups. After 12 weeks of intervention, the observed taxonomic units and Chao 1 were lower in the synbiotic group than at baseline (p < 0.001 for both). No difference for alpha diversity indicators was observed in the placebo group between baseline and 12 weeks of intervention. At the phylum level, the intestinal microbiota composition of the study groups was similar at baseline. The major phyla in the synbiotic group were Firmicutes (66.7%) and Bacteroidetes (18.8%). In the synbiotic group, the Bacteroidetes phylum was higher after 12 weeks than at baseline (24.0% vs. 18.8%, p < 0.01). In the synbiotic group, the Firmicutes/Bacteroidetes ratio was 3.54 at baseline and 2.75 at 12 weeks of intervention (p < 0.05). In the placebo group, the Firmicutes/Bacteroidetes ratio was 4.70 at baseline and 3.54 at 12 weeks of intervention (p < 0.05). After 12 weeks of intervention, the Firmicutes/Bacteroidetes ratio was also lower in the synbiotic group than in the placebo group (p < 0.05). In the synbiotic group, compared with the baseline, we observed a statistically significant increase in the genera Prevotella (5.28-14.4%, p < 0.001) and Dialister (9.68-13.4%; p < 0.05). Compared to baseline, we observed a statistically significant increase in the genera Prevotella (6.4-12.4%, p < 0.01) and Oscillospira (4.95% vs. 5.70%, p < 0.001) in the placebo group. In the synbiotic group, at the end of the intervention, an increase in Prevotella, Coprococcus, Lachnospiraceae (at the genus level) and Prevotella copri, Coprococcus eutactus, Ruminococcus spp. at the species level compared to baseline (predominance of Eubacterium dolichum, Lactobacillus ruminis, Clostridium ramosum, Bulleidia moorei) was observed. At the end of the 12th week of the study, when the synbiotic and placebo groups were compared, Bacteroides eggerthi species were dominant in the placebo group, while Collinsella stercoris species were dominant in the synbiotic group. CONCLUSION This study is the first pediatric obesity study to show that a synbiotic treatment is associated with both changes intestinal microbiota composition and decreases in BMI. Trial identifier: NCT05162209 (www. CLINICALTRIALS gov).
Collapse
Affiliation(s)
- Gonca Kilic Yildirim
- Faculty of Medicine, Pediatrics Nutrition and Metabolism Unit, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Meltem Dinleyici
- Faculty of Medicine, Department of Social Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Yvan Vandenplas
- Vrije Unversiteit Brussel, UZ Brussel, KidZ Health Castle, Brussels, Belgium
| | - Ener Cagri Dinleyici
- Faculty of Medicine, Department of Pediatrics, Eskisehir Osmangazi University, Eskisehir, TR-26040, Turkey.
| |
Collapse
|
10
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
11
|
Feitosa Ramos S, de Barros Fernandes T, Carlos Araújo D, Rodrigues Furtado Leitzke L, Gomes Alexandre Júnior R, Morais de Araújo J, Sales de Souza Júnior A, Heineck I, Maria de França Fonteles M, Osorio-de-Castro CGS, Bracken LE, Peak M, Pereira de Lyra Junior D, Costa Lima E. Adverse Drug Reactions to Anti-infectives in Hospitalized Children: A Multicenter Study in Brazil. J Pediatric Infect Dis Soc 2023; 12:76-82. [PMID: 36461778 DOI: 10.1093/jpids/piac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Adverse drug reactions (ADRs) to anti-infectives affect especially hospitalized children and contribute to increased morbidity, mortality, length of stay, and costs in healthcare systems. OBJECTIVE To assess ADRs associated with anti-infective use in Brazilian hospitalized children. METHODS A prospective cohort study was conducted in 5 public hospitals over 6 months. Children aged 0-11 years and 11 months who were hospitalized for more than 48 h and prescribed anti-infectives for over 24 h were included. RESULTS A total of 1020 patients met the inclusion criteria. Of these, 152 patients experienced 183 suspected ADRs. Most reactions were related to the gastrointestinal system (65.6%), followed by skin reactions (18.6%). Most reactions were classified as probable causality (58.5%), moderate severity (61.1%), and unavoidable (56.2%). Our findings showed that ADRs were associated with increased length of stay (P < .001), increased length of therapy (P < .015), increased days of therapy (P = .038), and increased number of anti-infectives prescribed per patient (P < .001). CONCLUSION Almost 15% of hospitalized children exposed to anti-infectives presented suspected ADRs. Their occurrence was classified as probable, of moderate severity, and unavoidable. ADRs were significantly influenced by the length of hospital stay and the number of anti-infectives prescribed per patient.
Collapse
Affiliation(s)
- Sheila Feitosa Ramos
- Laboratory of Teaching and Research in Social Pharmacy (LEPFS), Health Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Dyego Carlos Araújo
- Laboratory for Innovation in Pharmaceutical Care, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Luísa Rodrigues Furtado Leitzke
- Postgraduate Program in Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | - Isabela Heineck
- Postgraduate Program in Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Louise E Bracken
- Paediatric Medicines Research Unit, Institute in the Park, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Matthew Peak
- Paediatric Medicines Research Unit, Institute in the Park, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Divaldo Pereira de Lyra Junior
- Laboratory of Teaching and Research in Social Pharmacy (LEPFS), Health Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | | |
Collapse
|
12
|
Samarra A, Esteban-Torres M, Cabrera-Rubio R, Bernabeu M, Arboleya S, Gueimonde M, Collado MC. Maternal-infant antibiotic resistance genes transference: what do we know? Gut Microbes 2023; 15:2194797. [PMID: 37020319 PMCID: PMC10078139 DOI: 10.1080/19490976.2023.2194797] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Resistance to antibiotics is becoming a worldwide threat as infections caused by multidrug-resistant pathogenic microorganisms can overcome antibiotic treatments and spread quickly in the population. In the context of early life, newborns are at increased risk as their immune system is still under development, so infections and acquisition of resistance during childhood have short- and long-term consequences for the health. The moment of birth is the first exposure of infants to possible antibiotic-resistant microorganisms that may colonize their gut and other body sites. Different factors including mode of delivery, previous antibiotic exposure of the mother, gestational age and consumption of antibiotics in early-life have been described to modulate the neonate's microbiota, and thus, the resistome. Other factors, such as lactation, also impact the establishment and development of gut microbiota, but little is known about the role of breastmilk in transferring Antibiotic Resistant Genes (ARG). A deeper understanding of vertical transmission of antibiotic resistance from mothers to their offspring is necessary to determine the most effective strategies for reducing antibiotic resistance in the early life. In this review, we aim to present the current perspective on antibiotic resistances in mother-infant dyads, as well as a new insight on the study of the human gut and breastmilk resistome, and current strategies to overcome this public health problem, toward highlighting the gaps of knowledge that still need to be closed.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Esteban-Torres
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry, Dairy Research Institute- National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry, Dairy Research Institute- National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
13
|
Metabolic Modeling and Bidirectional Culturing of Two Gut Microbes Reveal Cross-Feeding Interactions and Protective Effects on Intestinal Cells. mSystems 2022; 7:e0064622. [PMID: 36005398 PMCID: PMC9600892 DOI: 10.1128/msystems.00646-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota is constituted by thousands of microbial interactions, some of which correspond to the exchange of metabolic by-products or cross-feeding. Inulin and xylan are two major dietary polysaccharides that are fermented by members of the human gut microbiota, resulting in different metabolic profiles. Here, we integrated community modeling and bidirectional culturing assays to study the metabolic interactions between two gut microbes, Phocaeicola dorei and Lachnoclostridium symbiosum, growing in inulin or xylan, and how they provide a protective effect in cultured cells. P. dorei (previously belonging to the Bacteroides genus) was able to consume inulin and xylan, while L. symposium only used certain inulin fractions to produce butyrate as a major end product. Constrained-based flux simulations of refined genome-scale metabolic models of both microbes predicted high lactate and succinate cross-feeding fluxes between P. dorei and L. symbiosum when growing in each fiber. Bidirectional culture assays in both substrates revealed that L. symbiosum growth increased in the presence of P. dorei. Carbohydrate consumption analyses showed a faster carbohydrate consumption in cocultures compared to monocultures. Lactate and succinate concentrations in bidirectional cocultures were lower than in monocultures, pointing to cross-feeding as initially suggested by the model. Butyrate concentrations were similar across all conditions. Finally, supernatants from both bacteria cultured in xylan in bioreactors significantly reduced tumor necrosis factor-α-induced inflammation in HT-29 cells and exerted a protective effect against the TcdB toxin in Caco-2 epithelial cells. Surprisingly, this effect was not observed in inulin cocultures. Overall, these results highlight the predictive value of metabolic models integrated with microbial culture assays for probing microbial interactions in the gut microbiota. They also provide an example of how metabolic exchange could lead to potential beneficial effects in the host. IMPORTANCE Microbial interactions represent the inner connections in the gut microbiome. By integrating mathematical modeling tools and microbial bidirectional culturing, we determined how two gut commensals engage in the exchange of cross-feeding metabolites, lactate and succinate, for increased growth in two fibers. These interactions underpinned butyrate production in cocultures, resulting in a significant reduction in cellular inflammation and protection against microbial toxins when applied to cellular models.
Collapse
|
14
|
Michel C, Blottière HM. Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Front Microbiol 2022; 13:825942. [PMID: 35783422 PMCID: PMC9247513 DOI: 10.3389/fmicb.2022.825942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Underpinning the theory "developmental origins of health and disease" (DOHaD), evidence is accumulating to suggest that the risks of adult disease are in part programmed by exposure to environmental factors during the highly plastic "first 1,000 days of life" period. An elucidation of the mechanisms involved in this programming is challenging as it would help developing new strategies to promote adult health. The intestinal microbiome is proposed as a long-lasting memory of the neonatal environment. This proposal is supported by indisputable findings such as the concomitance of microbiota assembly and the first 1,000-day period, the influence of perinatal conditions on microbiota composition, and the impact of microbiota composition on host physiology, and is based on the widely held but unconfirmed view that the microbiota is long-lastingly shaped early in life. In this review, we examine the plausibility of the gut microbiota being programmed by the neonatal environment and evaluate the evidence for its validity. We highlight that the capacity of the pioneer bacteria to control the implantation of subsequent bacteria is supported by both theoretical principles and statistical associations, but remains to be demonstrated experimentally. In addition, our critical review of the literature on the long-term repercussions of selected neonatal modulations of the gut microbiota indicates that sustained programming of the microbiota composition by neonatal events is unlikely. This does not exclude the microbiota having a role in DOHaD due to a possible interaction with tissue and organ development during the critical windows of neonatal life.
Collapse
Affiliation(s)
| | - Hervé M. Blottière
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| |
Collapse
|
15
|
Ventin-Holmberg R, Saqib S, Korpela K, Nikkonen A, Peltola V, Salonen A, de Vos WM, Kolho KL. The Effect of Antibiotics on the Infant Gut Fungal Microbiota. J Fungi (Basel) 2022; 8:328. [PMID: 35448562 PMCID: PMC9032081 DOI: 10.3390/jof8040328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Antibiotics are commonly used drugs in infants, causing disruptions in the developing gut microbiota with possible detrimental long-term effects such as chronic inflammatory diseases. The focus has been on bacteria, but research shows that fungi might have an important role as well. There are only a few studies on the infant gut fungal microbiota, the mycobiota, in relation to antibiotic treatment. Here, the aim was to investigate the impact of antibiotics on the infant gut mycobiota, and the interkingdom associations between bacteria and fungi. We had 37 antibiotic-naïve patients suffering from respiratory syncytial virus, of which 21 received one to four courses of antibiotics due to complications, and 16 remained antibiotic-naïve throughout the study. Fecal samples were collected before, during and after antibiotic treatment with a follow-up period of up to 9.5 months. The gut mycobiota was studied by Illumina MiSeq sequencing of the ITS1 region. We found that antibiotic use affected the gut mycobiota, most prominently seen as a higher relative abundance of Candida (p < 0.001), and a higher fungal diversity (p = 0.005−0.04) and richness (p = 0.03) in the antibiotic-treated infants compared to the antibiotic-naïve ones at multiple timepoints. This indicates that the gut mycobiota could contribute to the long-term consequences of antibiotic treatments.
Collapse
Affiliation(s)
- Rebecka Ventin-Holmberg
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (R.V.-H.); (S.S.); (K.K.); (A.S.); (W.M.d.V.)
- Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Schahzad Saqib
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (R.V.-H.); (S.S.); (K.K.); (A.S.); (W.M.d.V.)
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (R.V.-H.); (S.S.); (K.K.); (A.S.); (W.M.d.V.)
| | - Anne Nikkonen
- Children’s Hospital, Helsinki University, 00029 Helsinki, Finland;
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, 20014 Turku, Finland;
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (R.V.-H.); (S.S.); (K.K.); (A.S.); (W.M.d.V.)
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (R.V.-H.); (S.S.); (K.K.); (A.S.); (W.M.d.V.)
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (R.V.-H.); (S.S.); (K.K.); (A.S.); (W.M.d.V.)
- Children’s Hospital, Helsinki University, 00029 Helsinki, Finland;
- Department of Pediatrics, Tampere University, 33520 Tampere, Finland
| |
Collapse
|
16
|
Saa P, Urrutia A, Silva-Andrade C, Martín AJ, Garrido D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput Struct Biotechnol J 2021; 20:79-89. [PMID: 34976313 PMCID: PMC8685919 DOI: 10.1016/j.csbj.2021.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial communities perform emergent activities that are essentially different from those carried by their individual members. The gut microbiome and its metabolites have a significant impact on the host, contributing to homeostasis or disease. Food molecules shape this community, being fermented through cross-feeding interactions of metabolites such as lactate, acetate, and amino acids, or products derived from macromolecule degradation. Mathematical and experimental approaches have been applied to understand and predict the interactions between microorganisms in complex communities such as the gut microbiota. Rational and mechanistic understanding of microbial interactions is essential to exploit their metabolic activities and identify keystone taxa and metabolites. The latter could be used in turn to modulate or replicate the metabolic behavior of the community in different contexts. This review aims to highlight recent experimental and modeling approaches for studying cross-feeding interactions within the gut microbiome. We focus on short-chain fatty acid production and fiber fermentation, which are fundamental processes in human health and disease. Special attention is paid to modeling approaches, particularly kinetic and genome-scale stoichiometric models of metabolism, to integrate experimental data under different diet and health conditions. Finally, we discuss limitations and challenges for the broad application of these modeling approaches and their experimental verification for improving our understanding of the mechanisms of microbial interactions.
Collapse
Affiliation(s)
- Pedro Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860 Santiago, Chile
| | - Arles Urrutia
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alberto J. Martín
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Hill L, Sharma R, Hart L, Popov J, Moshkovich M, Pai N. The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The neonatal microbiome offers a valuable model for studying the origins of human health and disease. As the field of metagenomics expands, we also increase our understanding of early life influences on its development. In this review we will describe common techniques used to define and measure the microbiome. We will review in utero influences, normal perinatal development, and known risk factors for abnormal neonatal microbiome development. Finally, we will summarize current evidence that links early life microbial impacts on the development of chronic inflammatory diseases, obesity, and atopy.
Collapse
Affiliation(s)
- Lee Hill
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Department of Human Biology, Division of Exercise Science and Sports Medicine , University of Cape Town , Cape Town , South Africa
| | - Ruchika Sharma
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- McMaster University , Hamilton , Canada
| | - Lara Hart
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
| | - Jelena Popov
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- University College Cork, College of Medicine and Health , Cork , Ireland
| | - Michal Moshkovich
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Faculty of Health Sciences , McMaster University , Hamilton , Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Farncombe Family Digestive Health Research Institute , McMaster University , Hamilton , Canada
| |
Collapse
|