1
|
Baeza-Guzmán Y, Camargo-Ricalde SL, Trejo-Aguilar D, Montaño NM. Pine Forest Plantations in the Neotropics: Challenges and Potential Use of Ectomycorrhizal Fungi and Bacteria as Inoculants. J Fungi (Basel) 2025; 11:393. [PMID: 40422727 DOI: 10.3390/jof11050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Forest plantations in the Neotropics aim to alleviate pressure on primary forests. This study synthesizes knowledge on pine species used in these plantations, emphasizing the challenges and potential of ectomycorrhizal fungi and bacteria as inoculants. An analysis of 98 articles identifies 23 pine species in Mexico and Central America and about 16 fast-growing species in South America. While pine plantations provide a habitat for generalist species, they reduce the richness of specialist species. Ectomycorrhizal fungi and bacterial diversity in plantations with introduced pines is up to 20% lower compared to native ecosystems. Suillus and Hebeloma are commonly used as mycorrhizal inoculants for Neotropical and introduced species, including Pinus ponderosa and Pinus radiata in South America. Commercial inoculants predominantly feature the fungal species Pisolithus tinctorius, alongside bacterial genera such as Bacillus, Cohnella, and Pseudomonas. This study emphasizes the importance of leveraging native microbial communities and their synergistic interactions with ECM fungi and bacteria to enhance seedling growth and quality. Such a combined approach can improve plantation survival, boost resilience to environmental stressors, and promote long-term productivity. These findings underscore the need to incorporate native fungi and bacteria into inoculant strategies, advancing sustainable forestry practices and ecosystem adaptation in the Neotropics.
Collapse
Affiliation(s)
- Yajaira Baeza-Guzmán
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Sara Lucía Camargo-Ricalde
- Departamento de Biología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico
| | - Dora Trejo-Aguilar
- Facultad de Ciencias Agrícolas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltráns/n, Zona Universitaria, Xalapa 91090, Mexico
| | - Noé Manuel Montaño
- Departamento de Biología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
2
|
Wang J, Su X, Luo Y, Zhang Y, Wang Y, Gao J, Wang D. Soil Nutrient Dynamics and Fungal Community Shifts Drive the Degradation of Pinus sylvestris var. mongholica Plantations in the Loess Plateau. PLANTS (BASEL, SWITZERLAND) 2025; 14:1309. [PMID: 40364337 PMCID: PMC12073158 DOI: 10.3390/plants14091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
The degradation of Pinus sylvestris var. mongholica plantations in Youyu County on the Loess Plateau has caused major ecological issues, though the mechanisms remain poorly understood. This study explores the effects of stand age and soil properties on the rhizosphere fungal community and their potential roles in plantation degradation. Soil samples were collected from plantations of different stand ages (13, 20, 25, and 35 years), and their fungal diversity and composition were analyzed using high-throughput sequencing. The results showed that soil organic carbon and total nitrogen declined with stand age due to high nutrient demand and limited litter input. The available phosphorus and available potassium (AK) contents were identified as key limiting factors, influencing ectomycorrhizal fungi abundance and the overall soil fungal diversity. With an increasing stand age, the fungal diversity decreased, the ectomycorrhizal fungi declined, and the pathogenic fungi increased, exacerbating plantation degradation. Regression analysis further indicated a significant negative correlation between AK content and stand age, suggesting potassium deficiency as a critical driver of tree health decline. This study highlights the pivotal role of soil nutrient availability in shaping rhizosphere fungal communities and sustaining P. sylvestris plantations, offering insights into degradation mechanisms and strategies to enhance forest resilience on the Loess Plateau.
Collapse
Affiliation(s)
- Jiaxing Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (X.S.); (Y.L.); (Y.Z.)
| | - Xiaotian Su
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (X.S.); (Y.L.); (Y.Z.)
| | - Yimou Luo
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (X.S.); (Y.L.); (Y.Z.)
| | - Yue Zhang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (X.S.); (Y.L.); (Y.Z.)
| | - Yihan Wang
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China;
| | - Jing Gao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (X.S.); (Y.L.); (Y.Z.)
| | - Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (X.S.); (Y.L.); (Y.Z.)
| |
Collapse
|
3
|
Hou Z, Wang M, Xu H, Wang M, Hannula SE. Differential effects of pine wilt disease on root endosphere, rhizosphere, and soil microbiome of Korean white pine. Microbiol Spectr 2025; 13:e0232624. [PMID: 40047452 PMCID: PMC11960081 DOI: 10.1128/spectrum.02326-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 04/03/2025] Open
Abstract
Pine wilt disease (PWD), caused by pinewood nematodes, is highly destructive to pine forests in Asia and Europe, including Korean white pine (Pinus koraiensis). The microbiome in the needles and trunk of Pinus spp. are recognized to play key roles in resistance against PWD. However, the role of root and soil microbiomes in the resistance remains unclear. This study compares bacterial and fungal communities in the root endosphere, rhizosphere soil, and bulk soil of diseased versus healthy P. koraiensis. Results showed that PWD increased the α-diversity of fungi in rhizosphere soil but did not affect the microbial diversity in the root endosphere or bulk soil. The composition of bacterial and fungal communities in rhizosphere and bulk soils was significantly altered by PWD. Specifically, the relative abundance of Planctomycetes decreased, and the relative abundance of Tremellomycetes increased, while Agaricomycetes decreased in both rhizosphere and bulk soils after infestation with PWD, respectively. Relative abundances of Chloroflexi and Verrucomicrobia increased, while Proteobacteria decreased in bulk soil following PWD. Relative abundances of Leotiomycetes and Eurotiomycetes increased in the rhizosphere soil and bulk soil following PWD, respectively. Furthermore, with the host plant infestation by PWD, the relative abundance of ectomycorrhizal fungi decreases, while that of saprotrophic fungi increases in both rhizosphere and bulk soils. Our results revealed that PWD significantly affects the soil microbiomes of P. koraiensis, with varying impacts across different plant-soil compartments. This study provides insights into how root and soil microbiomes respond to PWD, enhancing our understanding of the disease's ecological consequences.IMPORTANCEThe belowground microbiome is often sensitive to infection of forest diseases and is also recognized as a potential reservoir for selection of microbial agents against PWD. Our study demonstrates that the dynamics of belowground microbiome following natural infection of PWD are compartment and taxa specific, with varying degrees of responses in both diversity and composition of bacterial or fungal communities across the root endosphere, rhizosphere soil, and bulk soil. The results highlight the importance of utilizing appropriate plant-soil compartments and microbial taxa to understand the ecological consequences of the destructive PWD.
Collapse
Affiliation(s)
- Zehai Hou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Mingwei Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Minggang Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| | - S. Emilia Hannula
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| |
Collapse
|
4
|
Xu L, He J, Meng Y, Zheng Y, Lu B, Zhang J, Zhou Y. Enhancing drought resistance in Pinus tabuliformis seedlings through root symbiotic fungi inoculation. FRONTIERS IN PLANT SCIENCE 2024; 15:1446437. [PMID: 39228833 PMCID: PMC11368727 DOI: 10.3389/fpls.2024.1446437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Background Drought constitutes a major abiotic stress factor adversely affecting plant growth and productivity. Plant-microbe symbiotic associations have evolved regulatory mechanisms to adapt to environmental stress conditions. However, the interactive effects of different fungi on host growth and stress tolerance under drought conditions remain unclear. Objective This study explored the effects of varying polyethylene glycol (PEG-6000) concentrations (0%, 15%, 25%, and 35%) on the growth and physiological responses of two ectomycorrhizal fungi (Suillus granulatus (Sg) and Pisolithus tinctorius (Pt)) and two dark septate endophytes (Pleotrichocladium opacum (Po) and Pseudopyrenochaeta sp. (Ps)) isolated from the root system of Pinus tabuliformis. Specifically, the study aimed to evaluate six inoculation treatments, including no inoculation (CK), single inoculations with Sg, Pt, Po, Ps, and a mixed inoculation (Sg: Pt : Po: Ps = 1:1:1:1), on the growth and physiological characteristics of P. tabuliformis seedlings under different water regimes: well-watered at 70% ± 5%, light drought at 50% ± 5%, and severe drought at 30% ± 5% of the maximum field water holding capacity. Results All four fungi exhibited the capacity to cope with drought stress by enhancing antioxidant activities and regulating osmotic balance. Upon successful root colonization, they increased plant height, shoot biomass, root biomass, total biomass, and mycorrhizal growth response in P. tabuliformis seedlings. Under drought stress conditions, fungal inoculation improved seedling drought resistance by increasing superoxide dismutase and catalase activities, free proline and soluble protein contents, and promoting nitrogen and phosphorus uptake. Notably, mixed inoculation treatments significantly enhanced antioxidant capacity, osmotic adjustment, and nutrient acquisition abilities, leading to superior growth promotion effects under drought stress compared to single inoculation treatments. Conclusion All four fungi tolerated PEG-induced drought stress, with increased antioxidant enzyme activities and osmotic adjustment substances and they promoted the growth and enhanced drought resistance of P. tabuliformis seedlings.
Collapse
Affiliation(s)
- Lingjie Xu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jiadong He
- Earth and Life Institute, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium
| | - Yu Meng
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Yanyan Zheng
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Bin Lu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jiawen Zhang
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Yong Zhou
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Huertas V, Jiménez A, Diánez F, Chelhaoui R, Santos M. Importance of Dark Septate Endophytes in Agriculture in the Face of Climate Change. J Fungi (Basel) 2024; 10:329. [PMID: 38786684 PMCID: PMC11122602 DOI: 10.3390/jof10050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Climate change is a notable challenge for agriculture as it affects crop productivity and yield. Increases in droughts, salinity, and soil degradation are some of the major consequences of climate change. The use of microorganisms has emerged as an alternative to mitigate the effects of climate change. Among these microorganisms, dark septate endophytes (DSEs) have garnered increasing attention in recent years. Dark septate endophytes have shown a capacity for mitigating and reducing the harmful effects of climate change in agriculture, such as salinity, drought, and the reduced nutrient availability in the soil. Various studies show that their association with plants helps to reduce the harmful effects of abiotic stresses and increases the nutrient availability, enabling the plants to thrive under adverse conditions. In this study, the effect of DSEs and the underlying mechanisms that help plants to develop a higher tolerance to climate change were reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (V.H.); (A.J.); (F.D.); (R.C.)
| |
Collapse
|
6
|
Sun W, Feng M, Zhu N, Leng F, Yang M, Wang Y. Genomic Characteristics and Comparative Genomics Analysis of the Endophytic Fungus Paraphoma chrysanthemicola DS-84 Isolated from Codonopsis pilosula Root. J Fungi (Basel) 2023; 9:1022. [PMID: 37888278 PMCID: PMC10607767 DOI: 10.3390/jof9101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Paraphoma chrysanthemicola is a newly identified endophytic fungus. The focus of most studies on P. chrysanthemicola has been on its isolation, identification and effects on plants. However, the limited genomic information is a barrier to further research. Therefore, in addition to studying the morphological and physiological characteristics of P. chrysanthemicola, we sequenced its genome and compared it with that of Paraphoma sp. The results showed that sucrose, peptone and calcium phosphate were suitable sources of carbon, nitrogen and phosphorus for this strain. The activities of amylase, cellulase, chitosanase, lipase and alkaline protease were also detected. Sequencing analysis revealed that the genome of P. chrysanthemicola was 44.1 Mb, with a scaffold N50 of 36.1 Mb and 37,077 protein-coding genes. Gene Ontology (GO) annotation showed that mannose-modified glycosylation was predominant in monosaccharide utilisation. The percentage of glycoside hydrolase (GH) modules was the highest in the carbohydrate-active enzymes database (CAZy) analysis. Secondary metabolite-associated gene cluster analysis identified melanin, dimethylcoprogen and phyllostictine A biosynthetic gene clusters (>60% similarity). The results indicated that P. chrysanthemicola had a mannose preference in monosaccharide utilisation and that melanin, dimethylcoprogen and phyllostictine A were important secondary metabolites for P. chrysanthemicola as an endophytic fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.S.); (M.F.); (N.Z.); (F.L.); (M.Y.)
| |
Collapse
|
7
|
Sun X, Zhao Y, Ding G. Morphogenesis and metabolomics reveal the compatible relationship among Suillus bovinus, Phialocephala fortinii, and their co-host, Pinus massoniana. Microbiol Spectr 2023; 11:e0145323. [PMID: 37676026 PMCID: PMC10580909 DOI: 10.1128/spectrum.01453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhizal (ECM) fungi and dark septate endophytes (DSEs) can both form a symbiotic relationship with the same host plant. However, the interactions that occur among these two types of fungi and their co-hosts are largely unknown. Here, we investigated interactions that occur among the ECM fungus Suillus bovinus, the DSE Phialocephala fortinii, and their co-host Pinus massoniana. We used both scanning electron microscopy and optical microscopy to characterize the morphogenesis of the two symbionts and employed the ultra-high-performance liquid chromatography-tandem mass spectrometry technique to assess the effects of fungal inoculation on the root metabolome. Under pure culture conditions, no synergistic or antagonistic effects were observed between Phi. fortinii and S. bovinus. Generally, S. bovinus and Phi. fortinii can simultaneously colonize P. massoniana roots without affecting each other's symbiotic processes. S. bovinus can colonize the root locus where Phi. fortinii has already invaded but not vice versa, which may be due to the physical barrier effect of the mantle. Both fungi can significantly promote the growth of P. massoniana, and they have a synergistic effect on host N and K uptake. Metabolite accumulation patterns in roots inoculated with Phi. fortinii and/or S. bovinus were greatly altered, especially with respect to organic acids, flavonoids, lipids, and phenolic acids. S. bovinus inoculation significantly enhanced root flavonoid biosynthesis, whereas Phi. fortinii and dual-inoculation treatments mainly induced phenylpropanoid biosynthesis. These findings reveal compatible relationships among P. massoniana, S. bovinus, and Phi. fortinii, and suggest a theoretical basis for ECM fungi and DSE co-application when cultivating seedlings. IMPORTANCE The prevalence of both ectomycorrhizal fungi and dark septate endophytes in the roots of a wide spectrum of tree species is well recognized. In this study, we investigated the interactions that occur among the ECM fungus S. bovinus, the DSE Phi. fortinii, and their co-host, P. massoniana. The two fungi can simultaneously colonize P. massoniana roots without affecting each other's symbiotic processes. S. bovinus appears to be superior to Phi. fortinii in microniche competition, which may be due to the physical barrier effect of the mantle. The two fungi have different effects on root metabolite accumulation patterns. S. bovinus inoculation significantly enhanced root flavonoid biosynthesis, whereas Phi. fortinii and dual-inoculation treatments mainly induced phenylpropanoid biosynthesis. This is the first study revealing the morphological and metabolic mechanisms that contribute to the compatible relationship among ECM fungi, DSEs, and their co-host.
Collapse
Affiliation(s)
- Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Yanzhen Zhao
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Bashian-Victoroff C, Brown A, Loyd AL, Carrino-Kyker SR, Burke DJ. Beech Leaf Disease Severity Affects Ectomycorrhizal Colonization and Fungal Taxa Composition. J Fungi (Basel) 2023; 9:497. [PMID: 37108950 PMCID: PMC10146144 DOI: 10.3390/jof9040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Beech leaf disease (BLD) is an emerging forest infestation affecting beech trees (Fagus spp.) in the midwestern and northeastern United States and southeastern Canada. BLD is attributed to the newly recognized nematode Litylenchus crenatae subsp. mccannii. First described in Lake County, Ohio, BLD leads to the disfigurement of leaves, canopy loss, and eventual tree mortality. Canopy loss limits photosynthetic capacity, likely impacting tree allocation to belowground carbon storage. Ectomycorrhizal fungi are root symbionts, which rely on the photosynthesis of autotrophs for nutrition and growth. Because BLD limits tree photosynthetic capacity, ECM fungi may receive less carbohydrates when associating with severely affected trees compared with trees without BLD symptoms. We sampled root fragments from cultivated F. grandifolia sourced from two provenances (Michigan and Maine) at two timepoints (fall 2020 and spring 2021) to test whether BLD symptom severity alters colonization by ectomycorrhizal fungi and fungal community composition. The studied trees are part of a long-term beech bark disease resistance plantation at the Holden Arboretum. We sampled from replicates across three levels of BLD symptom severity and compared fungal colonization via visual scoring of ectomycorrhizal root tip abundance. Effects of BLD on fungal communities were determined through high-throughput sequencing. We found that ectomycorrhizal root tip abundance was significantly reduced on the roots of individuals of the poor canopy condition resulting from BLD, but only in the fall 2020 collection. We found significantly more ectomycorrhizal root tips from root fragments collected in fall 2020 than in spring 2021, suggesting a seasonal effect. Community composition of ectomycorrhizal fungi was not impacted by tree condition but did vary between provenances. We found significant species level responses of ectomycorrhizal fungi between levels of both provenance and tree condition. Of the taxa analyzed, two zOTUs had significantly lower abundance in high-symptomatology trees compared with low-symptomatology trees. These results provide the first indication of a belowground effect of BLD on ectomycorrhizal fungi and contribute further evidence to the role of these root symbionts in studies of tree disease and forest pathology.
Collapse
Affiliation(s)
| | - Alexis Brown
- The Holden Arboretum, 9500 Sperry Road, Kirtland, OH 44094, USA; (C.B.-V.); (A.B.); (S.R.C.-K.)
| | - Andrew L. Loyd
- Bartlett Tree Research Laboratories, 13768 Hamilton Rd., Charlotte, NC 28278, USA;
| | - Sarah R. Carrino-Kyker
- The Holden Arboretum, 9500 Sperry Road, Kirtland, OH 44094, USA; (C.B.-V.); (A.B.); (S.R.C.-K.)
| | - David J. Burke
- The Holden Arboretum, 9500 Sperry Road, Kirtland, OH 44094, USA; (C.B.-V.); (A.B.); (S.R.C.-K.)
| |
Collapse
|
9
|
Duan M, Wang L, Song X, Zhang X, Wang Z, Lei J, Yan M. Assessment of the rhizosphere fungi and bacteria recruited by sugarcane during smut invasion. Braz J Microbiol 2023; 54:385-395. [PMID: 36371518 PMCID: PMC9944363 DOI: 10.1007/s42770-022-00871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Whip smut is one of the most serious and widely spread sugarcane diseases. Plant-associated microbes play various roles in conferring advantages to the host plant. Understanding the microbes associated with sugarcane roots will help develop strategies for the biocontrol of smut. Therefore, the present study explored microbe-mediated sugarcane response to smut invasion via 16S rRNA and ITS metabarcoding survey of the rhizosphere soils of resistant and susceptible sugarcane varieties. The bacterial and fungal diversity in the rhizosphere soils differed between the resistant and susceptible varieties. The bacterial genera Sphingomonas, Microcoleus_Es-Yyy1400, Marmoricola, Reyranella, Promicromonospora, Iamia, Phenylobacterium, Aridibacter, Actinophytocola, and Edaphobacter and one fungal genus Cyphellophora were found associated with smut resistance in sugarcane. Detailed analysis revealed that the majority of bacteria were beneficial, including the actinomycete Marmoricola and Iamia and Reyranella with denitrification activity. Analysis of bacterial network interaction showed that three major groups interacted during smut invasion. Meanwhile, seven of these genera appeared to interact and promote each other's growth. Finally, functional annotation based on the Functional Annotation of Prokaryotic Taxa (FAPROTAX) database predicted that the abundant bacteria are dominated by oxygenic photoautotrophy, photoautotrophy, and phototrophy functions, which may be related to smut resistance in sugarcane. The present study thus provides new insights into the dynamics of the sugarcane rhizosphere microbial community during smut invasion.
Collapse
Affiliation(s)
- Mingzheng Duan
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd, Nanning, 530004, China
| | - Lingqiang Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd, Nanning, 530004, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xiaoqiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zeping Wang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Jingchao Lei
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| |
Collapse
|
10
|
Xu L, Niu X, Li X, Zheng Y, Feng H, Fu Q, Zhou Y. Effects of nitrogen addition and root fungal inoculation on the seedling growth and rhizosphere soil microbial community of Pinus tabulaeformis. Front Microbiol 2022; 13:1013023. [PMID: 36338078 PMCID: PMC9626767 DOI: 10.3389/fmicb.2022.1013023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Nitrogen (N) availability is significant in different ecosystems, but the response of forest plant-microbial symbionts to global N deposition remains largely unexplored. In this study, the effects of different N concentration levels on four types of fungi, Suillus granulatus (Sg), Pisolithus tinctorius (Pt), Pleotrichocladium opacum (Po), and Pseudopyrenochaeta sp. (Ps), isolated from the roots of Pinus tabulaeformis were investigated in vitro. Then, the effects of the fungi on the growth performance, nutrient uptake, and rhizosphere soil microbial community structure of P. tabulaeformis under different N addition conditions (0, 40, and 80 kg hm−2 year−1) were examined. The biomass and phytohormone contents of the Sg, Pt and Po strains increased with increasing N concentration, while those of the Ps strain first increased and then decreased. All four fungal strains could effectively colonize the plant roots and form a strain-dependent symbiosis with P. tabulaeformis. Although the effects depended on the fungal species, the growth and root development of inoculated seedlings were higher than those of uninoculated seedlings under N deficiency and normal N supply conditions. However, these positive effects disappeared and even became negative under high N supply conditions. The inoculation of the four fungal strains also showed significant positive effects on the shoot and root nutrient contents of P. tabulaeformis. Fungal inoculation significantly increased different microbial groups and the total soil microorganisms but decreased the microbial diversity under N deficiency stress. In summary, exogenous symbiotic fungal inoculations could increase the growth performance of P. tabulaeformis under N deficiency and normal N supply conditions, but the effects were negative under excessive N addition.
Collapse
Affiliation(s)
- Lingjie Xu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaoyun Niu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xia Li
- School of Life Sciences, Hebei University, Baoding, China
| | - Yanyan Zheng
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Hualei Feng
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Qiang Fu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Yong Zhou
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
- *Correspondence: Yong Zhou,
| |
Collapse
|
11
|
Li Z, Zhang Y, Liu C, Gao Y, Han L, Chu H. Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress. Front Microbiol 2022; 13:991781. [PMID: 36204632 PMCID: PMC9530913 DOI: 10.3389/fmicb.2022.991781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Drought stress is one of the major abiotic factors limiting plant growth and causing ecological degradation. The regulation of reactive oxygen species (ROS) generation and ROS scavenging is essential to plant growth under drought stress. To investigate the role of arbuscular mycorrhizal fungi (AMF) on ROS generation and ROS scavenging ability under drought stress in Bombax ceiba, the ROS content, the expression levels of respiratory burst oxidase homologue (Rbohs), and the antioxidant response were evaluated in AMF and NMF (non-inoculated AMF) plants under drought stress. 14 BcRboh genes were identified in the B. ceiba genome and divided into five subgroups based on phylogenetic analysis. The effect of AMF on the expression profiles of BcRbohs were different under our conditions. AMF mainly downregulated the expression of Rbohs (BcRbohA, BcRbohD, BcRbohDX2, BcRbohE, BcRbohFX1, and BcRbohI) in drought-stressed seedlings. For well-water (WW) treatment, AMF slightly upregulated Rbohs in seedlings. AMF inoculation decreased the malondialdehyde (MDA) content by 19.11 and 20.85%, decreased the O2⋅– production rate by 39.69 and 65.20% and decreased H2O2 content by 20.06 and 43.21% compared with non-mycorrhizal (NMF) plants under drought stress in root and shoot, respectively. In addition, AMF inoculation increased the non-enzymatic antioxidants glutathione (GSH) and ascorbic acid (AsA) content in roots by 153.52 and 28.18% under drought stress, respectively. The activities of antioxidant enzymes (SOD, PX, CAT, APX, GPX, GR, MDAR, and DHAR) all increased ranging from 19.47 - 131.54% due to AMF inoculation under drought stress. In conclusion, these results reveal that AMF inoculation can maintain ROS homeostasis by mitigating drought-induced ROS burst, via decreasing ROS generation and enhancing ROS scavenging ability of B. ceiba seedlings.
Collapse
|
12
|
Native and Exotic Woodland from Patagonian Andes: Anthropic Impacts and Mycorrhizas. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Advances in the Role of Dark Septate Endophytes in the Plant Resistance to Abiotic and Biotic Stresses. J Fungi (Basel) 2021; 7:jof7110939. [PMID: 34829226 PMCID: PMC8622582 DOI: 10.3390/jof7110939] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Endophytic fungi have been studied in recent decades to understand how they interact with their hosts, the types of relationships they establish, and the potential effects of this interaction. Dark septate endophytes (DSE) are isolated from healthy plants and form melanised structures in the roots, including inter- and intracellular hyphae and microsclerotia, causing low host specificity and covering a wide geographic range. Many studies have revealed beneficial relationships between DSE and their hosts, such as enhanced plant growth, nutrient uptake, and resistance to biotic and abiotic stress. Furthermore, in recent decades, studies have revealed the ability of DSE to mitigate the negative effects of crop diseases, thereby highlighting DSE as potential biocontrol agents of plant diseases (BCAs). Given the importance of these fungi in nature, this article is a review of the role of DSE as BCAs. The findings of increasing numbers of studies on these fungi and their relationships with their plant hosts are also discussed to enable their use as a tool for the integrated management of crop diseases and pests.
Collapse
|