1
|
Guo X, Chen D, Huang P, Gao L, Zhou W, Zhang J, Zhang Q. Effects of tannin-tolerant lactic acid bacteria in combination with tannic acid on the fermentation quality, protease activity and bacterial community of stylo silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2540-2551. [PMID: 39568328 DOI: 10.1002/jsfa.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Proteolysis during ensiling primarily occurs due to undesirable microbial and plant protease activities, which reduce the protein supply to ruminant livestock and cause a series of environmental problems. The objective of this study was to investigate the effects of the tannin-tolerant lactic acid bacterium strain Lactiplantibacillus plantarum 4 (LABLP4) in combination with tannic acid (TA) on protein preservation in stylo (Stylosanthes guianensis) silage. The stylos were either ensiled without additives (control) or treated with LABLP4 (106 colony-forming units per gram of fresh matter), 1% (fresh matter basis) TA, 2% TA, LABLP4 + 1% TA and LABLP4 + 2% TA. Fermentation quality, protein composition, protease activity and bacterial diversity were determined at 3, 7, 14 and 31 days of ensiling. RESULTS The combination of LABLP4 and TA decreased the pH, coliform bacteria count, non-protein nitrogen, ammonia-nitrogen (NH3-N) content and protease activities (P < 0.05) and increased the true protein content (P < 0.05) compared to the control. LABLP4 + TA led to a lower pH and NH3-N content than LABLP4 or TA alone (P < 0.05). On the last day (31 days) of ensiling, LABLP4 + TA increased the relative abundances of Firmicutes and Lactiplantibacillus (P < 0.05), except for the LABLP4 treatment, and decreased the relative abundance of Actinobacteria (P < 0.05). CONCLUSION The combination of tannin-tolerant LABLP4 and TA effectively improved the fermentation quality of stylo silage and reduced protein degradation by altering the bacterial community structure. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Guo
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Dandan Chen
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Peishan Huang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Lin Gao
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Jianguo Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| |
Collapse
|
2
|
Walling B, Bharali P, Ramachandran D, Kanagasabai V, Dutta N, Hazarika S, Maadurshni GB, Manivannan J, Kumari S, Acharjee SA, Gogoi B, Alemtoshi, Sorhie V, Vishwakarma V. Bacterial valorization of agricultural-waste into a nano-sized cellulosic matrix for mitigating emerging pharmaceutical pollutants: An eco-benign approach. Int J Biol Macromol 2024; 277:133684. [PMID: 39084979 DOI: 10.1016/j.ijbiomac.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.457 g L-1 by utilizing Komagataeibacter saccharivorans NUWB1 in combination with components from the Hestrin-Schramm (HS) medium. Physicochemical properties revealed that the obtained BNC exhibited a crystallinity index of 60.5 %, tensile strength of 43.5 MPa along with enhanced thermostability reaching up to 360 °C. N2 adsorption-desorption isotherm of the BNC displayed characteristics of type IV, indicating the presence of a mesoporous structure. The produced BNC underwent thorough investigation, focusing on its efficacy in addressing environmental concerns, particularly in removing emerging pharmaceutical pollutants like Metformin and Paracetamol. Remarkably, the BNC exhibited strong adsorption capabilities, aligning with the Langmuir isotherm and pseudo-second-order model. Thermodynamic analysis confirmed a spontaneous and endothermic adsorption process. Furthermore, the BNC showed potential for regeneration, enabling up to five recycling cycles. Cytotoxicity and oxidative stress assays validated the biocompatibility of BNC. Lastly, the BNC films displayed an impressive 88.73 % biodegradation within 21 days.
Collapse
Affiliation(s)
- Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India.
| | - D Ramachandran
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, -600119, Tamil Nadu, India
| | - Viswanathan Kanagasabai
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, -600119, Tamil Nadu, India
| | - Nipu Dutta
- Department of Chemical Science, Tezpur University, Napaam, Tezpur, -784028, Assam, India
| | - Swapnali Hazarika
- Chemical Engineering Group, CSIR-North East Institute of Science & Technology, Jorhat, -785006, Assam, India
| | | | - Jeganathan Manivannan
- Environmental Health & Toxicology Laboratory, Department of Environmental Science, Bharathiar University, Tamil Nadu, India
| | - Sony Kumari
- Department of Applied Biology, University of Science and Technology, Meghalaya, Ri Bhoi, Baridua 793101, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR, Delhi, India
| |
Collapse
|
3
|
Zhao M, Bao J, Wang Z, Sun P, Liu J, Yan Y, Ge G. Utilisation of Lactiplantibacillus plantarum and propionic acid to improve silage quality of amaranth before and after wilting: fermentation quality, microbial communities, and their metabolic pathway. Front Microbiol 2024; 15:1415290. [PMID: 38903783 PMCID: PMC11187283 DOI: 10.3389/fmicb.2024.1415290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Objective The aim of this study was to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) and propionic acid (PA) on fermentation characteristics and microbial community of amaranth (Amaranthus hypochondriaus) silage with different moisture contents. Methods Amaranth was harvested at maturity stage and prepared for ensiling. There were two moisture content gradients (80%: AhG, 70%: AhS; fresh material: FM) and three treatments (control: CK, L. plantarum: LP, propionic acid: PA) set up, and silages were opened after 60 d of ensiling. Results The results showed that the addition of L. plantarum and PA increased lactic acid (LA) content and decreased pH of amaranth after fermentation. In particular, the addition of PA significantly increased crude protein content (p < 0.05). LA content was higher in wilted silage than in high-moisture silage, and it was higher with the addition of L. plantarum and PA (p < 0.05). The dominant species of AhGLP, AhSCK, AhSLP and AhSPA were mainly L. plantarum, Lentilactobacillus buchneri and Levilactobacillus brevis. The dominant species in AhGCK include Enterobacter cloacae, and Xanthomonas oryzae was dominated in AhGPA, which affected fermentation quality. L. plantarum and PA acted synergistically after ensiling to accelerate the succession of dominant species from gram-negative to gram-positive bacteria, forming a symbiotic microbial network centred on lactic acid bacteria. Both wilting and additive silage preparation methods increased the degree of dominance of global and overview maps and carbohydrate metabolism, and decreased the degree of dominance of amino acid metabolism categories. Conclusion In conclusion, the addition of L. plantarum to silage can effectively improve the fermentation characteristics of amaranth, increase the diversity of bacterial communities, and regulate the microbial community and its functional metabolic pathways to achieve the desired fermentation effect.
Collapse
Affiliation(s)
- Muqier Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Bao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Zhijun Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Pengbo Sun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyi Liu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuting Yan
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Khan N, Shah TA, Akhtar HMS, Salamatullah AM, Bourhia M, Mekonnen AB, Khan MZ, Nazar M, Khan NA. Influence of maize genotypes and harvest stages on in-silo fermentation quality and nutritional value of corn silage during hot summer condition of the tropics. BMC PLANT BIOLOGY 2024; 24:490. [PMID: 38825718 PMCID: PMC11145827 DOI: 10.1186/s12870-024-05179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.
Collapse
Affiliation(s)
- Nadar Khan
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, 25130, Pakistan.
- Livestock and Dairy Development Department (Research), Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | | | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, 80060, Morocco
| | | | | | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, 25130, Pakistan.
| |
Collapse
|
5
|
Xin Y, Chen C, Zhong Y, Bu X, Huang S, Tahir M, Du Z, Liu W, Yang W, Li J, Wu Y, Zhang Z, Lian J, Xiao Q, Yan Y. Effect of storage time on the silage quality and microbial community of mixed maize and faba bean in the Qinghai-Tibet Plateau. Front Microbiol 2023; 13:1090401. [PMID: 36741892 PMCID: PMC9893498 DOI: 10.3389/fmicb.2022.1090401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Tibetan Plateau is facing serious shortage of forage in winter and spring season due to its special geographical location. Utilization of forages is useful to alleviate the forage shortage in winter and spring season. Consequently, the current study was aimed to evaluate the influence of storage time on the silage quality and microbial community of the maize (Zea mays L.) and faba bean (Vicia faba L.) mixed silage at Qinghai-Tibet Plateau. Maize and faba bean were ensiled with a fresh weight ratio of 7:3, followed by 30, 60, 90, and 120 days of ensiling. The results showed the pH value of mixed silage was below 4.2 at all fermentation days. The LA (lactic acid) content slightly fluctuated with the extension of fermentation time, with 33.76 g/kg DM at 90 days of ensiling. The AA (acetic acid) and NH3-N/TN (ammonium nitrogen/total nitrogen) contents increased with the extension of fermentation time and no significantly different between 90 and 120 days. The CP (crude protein) and WSC (water soluble carbohydrate) contents of mixed silage decreased significantly (P < 0.05) with ensiling time, but the WSC content remained stable at 90 days. The Proteobacteria was the predominant phyla in fresh maize and faba bean, and Pseudomonas and Sphingomonas were the predominant genera. After ensiling, Lactobacillus was the prevalent genus at all ensiling days. The relative abundance of Lactococcus increased rapidly at 90 days of ensiling until 120 days of fermentation. Overall, the storage time significant influenced the silage fermentation quality, nutrient content, and microbial environment, and it remained stable for 90 days of ensiling at Qinghai-Tibet Plateau. Therefore, the recommended storage time of forage is 90 days in Qinghai-Tibet Plateau and other cool areas.
Collapse
Affiliation(s)
- Yafen Xin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yihao Zhong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xingyue Bu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shan Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Tahir
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhaochang Du
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jiayi Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhengyong Zhang
- Agricultural Science Research Institute of Ganzi District, Garzê Tibetan Autonomous Prefecture, China
| | - Jinglong Lian
- Agricultural Science Research Institute of Ganzi District, Garzê Tibetan Autonomous Prefecture, China
| | - Qiyin Xiao
- Agricultural Science Research Institute of Ganzi District, Garzê Tibetan Autonomous Prefecture, China,*Correspondence: Qiyin Xiao,
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China,Yanhong Yan,
| |
Collapse
|
6
|
Lentilactobacillus buchneri Preactivation Affects the Mitigation of Methane Emission in Corn Silage Treated with or without Urea. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the effect of different forms of Lentilactobacillus buchneri on the in vitro methane production, fermentation characteristics, nutritional quality, and aerobic stability of corn silage treated with or without urea. The following treatments were applied prior to ensiling: (1) no urea treatment and LB; (2) no urea treatment+freeze dried LB; (3) no urea treatment+preactivated LB; (4) with urea treatment+no LB; (5) with urea treatment+freeze dried LB; (6) with urea treatment+preactivated. LB was applied at a rate of 3 × 108 cfu/kg on a fresh basis, while urea was applied at a rate of 1% on the basis of dry matter. Data measured at different time points were analyzed according to a completely randomized design, with a 2 × 3 × 5 factorial arrangement of treatments, while the others were analyzed with a 2 × 3 factorial arrangement. Preactivated LB was more effective than freeze-dried LB in reducing silage pH, ammonia nitrogen, cell-wall components, yeast count, and carbon dioxide production, as well as increasing lactic acid and residual water-soluble carbohydrate and aerobic stability (p < 0.0001). A significant reduction in the methane ratio was observed after 24 h and 48 h incubation with preactivated forms of LB (p < 0.001). The results indicated that preactivated LB combined with urea improved fermentation characteristics, nutritional quality, and aerobic stability and reduced the methane ratio of corn silages.
Collapse
|
7
|
Sun H, Liao C, Lu G, Zheng Y, Cheng Q, Xie Y, Wang C, Chen C, Li P. Role of Lactiplantibacillus paraplantarum during anaerobic storage of ear-removed corn on biogas production. BIORESOURCE TECHNOLOGY 2022; 364:128061. [PMID: 36195220 DOI: 10.1016/j.biortech.2022.128061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
To optimize the volatile fatty acid production for anaerobic fermentation, the ear-removed corn was ensiled without (control) or with Lactiplantibacillus plantarum (LP), Lacticaseibacillus paracasei (LC) and L. paraplantarum (LpP). Inoculation of LpP increased acetic acid content by 40%, and decreased butyric acid content by 38% in relative to control. Moreover, inoculation of LpP decreased the bacterial alpha diversity indices, while inherent species of Lentilactobacillus buchneri and L. hilgardii dominated the anaerobic fermentation. In particular, inoculation of LpP restricted the growth of yeasts and production of propionic acid at the early stage of storage, but continuously stimulated anaerobic fermentation, resulting in a higher maximal cumulative gas emissions of methane (by about 20 %) than that of LP and LC. Therefore, inoculation of LpP during anaerobic storage was favorable to produce intermediate metabolites (acetic acid) for subsequent biogas production of ear-removed corn.
Collapse
Affiliation(s)
- Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangrou Lu
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chunmei Wang
- Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
8
|
Zhao M, Zhang H, Pan G, Yin H, Sun J, Yu Z, Bai C, Xue Y. Effect of exogenous microorganisms on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage. Front Microbiol 2022; 13:1052837. [PMID: 36386706 PMCID: PMC9664940 DOI: 10.3389/fmicb.2022.1052837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
This study aims to investigate the effects of adding Lactobacillus buchneri (LB), Lactobacillus brevis (LBR) and Bacillus subtilis (BS) on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage. The results showed that the addition of LB significantly increased the pH and acetic acid content (p < 0.05), but high-quality silage was obtained. The addition of LBR and BS improved the fermentation quality of sorghum-sudangrass silage. The use of additives reduced the nitrate content in sorghum-sudangrass silage. The LB group increased the release of N2O at 3–7 days of ensiling (p < 0.05), and LBR and BS increased the release of N2O at 1–40 days of ensiling (p < 0.05). On the first day of ensiling, all silages were dominated by Weisslla, over 3 days of ensiling all silages were dominated by Lactobacillus. Acinetobacter, Serratia, Aquabacterium, and unclassified_f_enterobacteriaceae showed significant negative correlations with nitrate degradation during sorghum-sudangrass ensiling (p < 0.05). The BS and LBR groups increased the metabolic abundance of denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction (p < 0.05). Overall, the additive ensures the fermentation quality of sorghum-sudangrass silage and promotes the degradation of nitrate by altering the bacterial community.
Collapse
Affiliation(s)
- Meirong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hongyu Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Gang Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Juanjuan Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Chunsheng Bai
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Chunsheng Bai,
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
- Yanlin Xue,
| |
Collapse
|
9
|
Zheng Y, Li M, Xu J, Sun H, Cheng Q, Xie Y, Wang C, Chen C, Li P. Effects of different cutting methods and additives on the fermentation quality and microbial community of Saccharum arundinaceum silage. Front Microbiol 2022; 13:999881. [PMID: 36212833 PMCID: PMC9539546 DOI: 10.3389/fmicb.2022.999881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To develop a new high-yielding and polysaccharide-containing forage resource for livestock, the effects of different cutting methods and additives on Saccharum arundinaceum silage were evaluated. The wilted S. arundinaceum were chopped and knead-wired. The silages from each cutting method were treated with Lactobacillus plantarum (LP), cellulase (CE) and the combination of LP and CE (LP + CE) for 3, 7, 15, 30, and 60 days. Compared with the CK treatment, CE treatment exhibited better effects in the degradation of neutral detergent fiber (NDF), LP exhibited a better performance in preserving the content of dry matter (DM), and adding LP + CE significantly enhanced (P < 0.05) the contents of lactic acid (LA), crude protein (CP) and DM and significantly reduced (P < 0.05) the pH and NDF content during ensiling. In addition, both additives exerted a remarkable effect on the silage bacterial community (P < 0.05), with a dramatic increase in the Lactobacillus abundance and a decrease in the abundance of Enterobacter. Lactic acid bacteria (LAB) became the most dominant bacteria that affected the fermentation quality of LP and LP + CE silages. Meanwhile, chopped silages showed better fermentation quality and nutrient preservation and a higher abundance of LAB. Our research indicated that the chopped S. arundinaceum ensiling with LP + CE could exert a positive effect on LA fermentation and preservation of nutrient substances by shifting the bacterial community. In conclusion, S. arundinaceum can serve as a new silage resource for feed utilization by the ensiling method of LP + CE-chopped.
Collapse
Affiliation(s)
- Yulong Zheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Mengxin Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jinyi Xu
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Hong Sun
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Qiming Cheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Yixiao Xie
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Chunmei Wang
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Chao Chen
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Ping Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: Ping Li,
| |
Collapse
|
10
|
Feng J, Li Y, Zhang J, Zhang M, Zhang X, Shahzad K, Guo L, Qi T, Tang H, Wang H, Qiao X, Lin Z, Xing C, Wu J. Transcript Complexity and New Insights of Restorer Line in CMS-D8 Cotton Through Full-Length Transcriptomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:930131. [PMID: 35800603 PMCID: PMC9253813 DOI: 10.3389/fpls.2022.930131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Hybrid utilization has proficiently increased crop production worldwide. The cytoplasmic male sterility (CMS) system has emerged as an efficient tool for commercial hybrid cotton seed production. The restorer line with dominant Rf2 gene can restore the fertility of the CMS-D8 sterile line. However, the molecular mechanism of fertility restoration remains unclear in CMS-D8 cotton that limits wider utilization of three-line hybrid breeding. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to understand fertility restoration mechanism of CMS-D8 cotton. In total, 228,106 full-length non-chimeric transcriptome sequences were obtained from anthers of developing flowering buds. The analysis results identified 3,174 novel isoforms, 2,597 novel gene loci, 652 long non-coding RNAs predicted from novel isoforms, 7,234 alternative splicing events, 114 fusion transcripts, and 1,667 genes with alternative polyadenylation. Specially, two novel genes associated with restoration function, Ghir_D05.742.1 and m64033_190821_201011/21103726/ccs were identified and showed significant higher levels of expression in restorer line than sterile and maintainer lines. Our comparative full-length transcriptome analysis provides new insights into the molecular function of Rf2 fertility restorer gene. The results of this study offer a platform for fertility restoration candidate gene discovery in CMS-D8 cotton.
Collapse
Affiliation(s)
- Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
11
|
Effect of Novel Aspergillus and Neurospora species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Research on additives that improve the quality of silages for an enhanced and sustainable biogas production are limited in the literature. Frequently used additives such as lactic acid bacteria enhance the quality of silages but have no significant effect on biogas yield. This study investigated the effect of a new enzymatic additive on the quality of ensiling and BMP of sugar beet leaves. Sugar beet leaves were ensiled with and without the additive (Aspergillus- and Neurospora-based additive) in ratios of 50:1 (A50:1), 150:1 (B150:1), and 500:1 (C500:1) (gsubstrate/gadditive) for 370 days at ambient temperature. Results showed that silages with additive had lower yeast activity and increased biodegradability compared to silages without additive (control). The additive increased the BMP by 45.35%, 24.23%, and 21.69% in silages A50:1, B150:1, and C500:1 respectively, compared to silages without additive (control). Although the novel enzyme is in its early stage, the results indicate that it has a potential for practical application at an additive to substrate ratio (g/g) of 1:50. The use of sugar beet leaves and the novel enzyme for biogas production forms part of the circular economy since it involves the use of wastes for clean energy production.
Collapse
|
12
|
Sun D, Li X, Yin Z, Hou Z. The Full-Length Transcriptome Provides New Insights Into the Transcript Complexity of Abdominal Adipose and Subcutaneous Adipose in Pekin Ducks. Front Physiol 2021; 12:767739. [PMID: 34858212 PMCID: PMC8631521 DOI: 10.3389/fphys.2021.767739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Adipose tissues have a central role in organisms, and adipose content is a crucial economic trait of poultry. Pekin duck is an ideal model to study the mechanism of abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis and deposition. Alternative splicing contributes to functional diversity in abdominal and subcutaneous adipose. However, there has been no systematic analysis of the dynamics of differential alternative splicing of abdominal and subcutaneous adipose in Pekin duck. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to explore the transcriptional complexity of abdominal and subcutaneous adipose in Pekin ducks. In total, 143,931 and 111,337 full-length non-chimeric transcriptome sequences of abdominal and subcutaneous adipocytes were obtained from 41.78 GB raw data, respectively. These data led us to identify 19,212 long non-coding RNAs (lncRNAs) and 74,571 alternative splicing events. In addition, combined with the next-generation sequencing technology, we correlated the structure and function annotation with the differential expression profiles of abdominal and subcutaneous adipose transcripts. This study identified lots of novel alternative splicing events and major transcripts of transcription factors related to adipose synthesis. STAT3 was reported as a vital gene for adipogenesis, and we found that its major transcript is STAT3-1, which may play a considerable role in the process of adipose synthesis in Pekin duck. This study greatly increases our understanding of the gene models, genome annotations, genome structures, and the complexity and diversity of abdominal and subcutaneous adipose in Pekin duck. These data provide insights into the regulation of alternative splicing events, which form an essential part of transcript diversity during adipogenesis in poultry. The results of this study provide an invaluable resource for studying alternative splicing and tissue-specific expression.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoqin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhongtao Yin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuocheng Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Li P, Tang X, Liao C, Li M, Chen L, Lu G, Huang X, Chen C, Gou W. Effects of Additives on Silage Fermentation Characteristic and In Vitro Digestibility of Perennial Oat at Different Maturity Stages on the Qinghai Tibetan. Microorganisms 2021; 9:2403. [PMID: 34835528 PMCID: PMC8622343 DOI: 10.3390/microorganisms9112403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
To effectively use local grass resources to cover the winter feed shortage on the Qinghai-Tibetan Plateau, the silage fermentation and in vitro digestibility of perennial oat (Helictotrichonvirescens Henr.) were investigated. Perennial oat was harvested at the heading/flowering stage, wilted under sunny conditions, chopped, vacuumed in small bag silos, and stored at ambient temperatures (5-15 °C) for 60 days. The silages were treated without (CK) or with local lactic acid bacteria (LAB) inoculant (IN1), commercial LAB inoculant (IN2), and sodium benzoate (BL). Control silages of perennial oat at early heading stage showed higher (p < 0.05) lactate and acetate contents and lower (p < 0.05) final pH, butyrate, and ammonia-N contents than those at the flowering stage. High levels of dry matter recovery (DMR) and crude protein (CP) were observed in IN1- and BL-treated silages, with high in vitro gas production and dry matter digestibility. Compared to CK, additives increased (p < 0.05) aerobic stability by inhibiting yeasts, aerobic bacteria, and coliform bacteria during ensiling. In particular, the local LAB inoculant increased (p < 0.05) concentrations of lactate, acetate and propionate, and decreased concentrations of butyrate and ammonia-N in silages. This study confirmed that local LAB inoculant could improve the silage quality of perennial oat, and this could be a potential winter feed for animals such as yaks on the Qinghai Tibetan Plateau.
Collapse
Affiliation(s)
- Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China;
| | - Xiaolong Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
| | - Maoya Li
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China;
| | - Liangyin Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
| | - Guangrou Lu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
| | - Xiaokang Huang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (P.L.); (X.T.); (C.L.); (L.C.); (G.L.); (X.H.)
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China;
| |
Collapse
|