1
|
Zhang Y, Resch MC, Schütz M, Liao Z, Frey B, Risch AC. Strengthened plant-microorganism interaction after topsoil removal cause more deterministic microbial assembly processes and increased soil nitrogen mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175031. [PMID: 39069191 DOI: 10.1016/j.scitotenv.2024.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Topsoil removal, among other restoration measures, has been recognized as one of the most successful methods to restore biodiversity and ecosystem functioning in European grasslands. However, knowledge about how removal as well as other restoration methods influence interactions between plant and microbial communities is very limited. The aims of the current study were to understand the impact of topsoil removal on plant-microorganism interactions and on soil nitrogen (N) mineralization, as one example of ecosystem functioning. We examined how three different grassland restoration methods, namely 'Harvest only', 'Topsoil removal' and 'Topsoil removal + Propagules (plant seed addition)', affected i) the interactions between plants and soil microorganisms, ii) soil microbial community assembly processes, and iii) soil N mineralization. We compared the outcome of these three restoration methods to initial degraded and target semi-natural grasslands in the Canton of Zurich, Switzerland. We were able to show that 'Topsoil removal' and 'Topsoil removal + Propagules', but not 'Harvest only', reduced the soil total N pool and available N concentration, but increased soil N mineralization and strengthened the plant-microorganism interactions. Microbial community assembly processes shifted towards more deterministic after both topsoil removal treatments. These shifts could be attributed to an increase in dispersal limitation and selection due to stronger interactions between plants and soil microorganisms. The negative relationship between soil N mineralization and microbial community stochasticity indicated that microbial assembly processes, to some extent, can be incorporated into model predictions of soil functions. Overall, the results suggest that topsoil removal may change the microbial assembly processes and thus the functioning of grassland ecosystems by enhancing the interaction between plants and soil microorganisms.
Collapse
Affiliation(s)
- Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Monika Carol Resch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ziyan Liao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Anita Christina Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
2
|
Wilson K, Arunachalam S. Microbiome transition mediated plant immune response to Alternaria solani (Ellis & Martin) Jones & Grout infection in tomato ( Solanum lycopersicum L.). Heliyon 2024; 10:e37203. [PMID: 39296181 PMCID: PMC11409117 DOI: 10.1016/j.heliyon.2024.e37203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Alternaria solani (Ellis & Martin) Jones & Grout, causing early blight infection in solanaceous crops, is a growing threat influencing sustainable crop production. Understanding the variation in the foliar microbiome, particularly the bacterial community during pathogenesis, can provide critical information on host-pathogen interactions, highlighting the host immune response during pathogen invasion. In the present study, early blight (EB) infection was artificially induced in tomato leaves, and the transition in the foliar bacterial community from healthy leaf tissue to infected leaves was analyzed. The 16s sequencing data revealed a significant shift in alpha and beta diversity, with infected leaf tissue exhibiting considerably lower bacterial abundance and diversity. Further interpretation at the genus level highlighted the possible role of the host immune system in recruiting higher nitrogen-fixing bacteria to resist the pathogen. The study, in addition to analyzing the foliar bacterial community transition during pathogenesis, has also shed light on the possible strategy employed by the host in recruiting selective nutrient-enriching microbes. Further application of this research in developing biocontrol agents with higher microbial host colonizing ability will be of tremendous benefit in achieving sustainable EB control measures.
Collapse
Affiliation(s)
- Karun Wilson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sathiavelu Arunachalam
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Jansen Z, Alameri A, Wei Q, Kulhanek DL, Gilmour AR, Halper S, Schwalm ND, Thyer R. A modular toolkit for environmental Rhodococcus, Gordonia, and Nocardia enables complex metabolic manipulation. Appl Environ Microbiol 2024; 90:e0034024. [PMID: 39082821 PMCID: PMC11337820 DOI: 10.1128/aem.00340-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Soil-dwelling Actinomycetes are a diverse and ubiquitous component of the global microbiome but largely lack genetic tools comparable to those available in model species such as Escherichia coli or Pseudomonas putida, posing a fundamental barrier to their characterization and utilization as hosts for biotechnology. To address this, we have developed a modular plasmid assembly framework, along with a series of genetic control elements for the previously genetically intractable Gram-positive environmental isolate Rhodococcus ruber C208, and demonstrate conserved functionality in 11 additional environmental isolates of Rhodococcus, Nocardia, and Gordonia. This toolkit encompasses five Mycobacteriale origins of replication, five broad-host-range antibiotic resistance markers, transcriptional and translational control elements, fluorescent reporters, a tetracycline-inducible system, and a counter-selectable marker. We use this toolkit to interrogate the carotenoid biosynthesis pathway in Rhodococcus erythropolis N9T-4, a weakly carotenogenic environmental isolate and engineer higher pathway flux toward the keto-carotenoid canthaxanthin. This work establishes several new genetic tools for environmental Mycobacteriales and provides a synthetic biology framework to support the design of complex genetic circuits in these species.IMPORTANCESoil-dwelling Actinomycetes, particularly the Mycobacteriales, include both diverse new hosts for sustainable biomanufacturing and emerging opportunistic pathogens. Rhodococcus, Gordonia, and Nocardia are three abundant genera with particularly flexible metabolisms and untapped potential for natural product discovery. Among these, Rhodococcus ruber C208 was shown to degrade polyethylene; Gordonia paraffinivorans can assimilate carbon from solid hydrocarbons; and Nocardia neocaledoniensis (and many other Nocardia spp.) possesses dual isoprenoid biosynthesis pathways. Many species accumulate high levels of carotenoid pigments, indicative of highly active isoprenoid biosynthesis pathways which may be harnessed for fermentation of terpenes and other commodity isoprenoids. Modular genetic toolkits have proven valuable for both fundamental and applied research in model organisms, but such tools are lacking for most Actinomycetes. Our suite of genetic tools and DNA assembly framework were developed for broad functionality and to facilitate rapid prototyping of genetic constructs in these organisms.
Collapse
Affiliation(s)
- Zachary Jansen
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, USA
| | - Abdulaziz Alameri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Qiyao Wei
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Devon L. Kulhanek
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Andrew R. Gilmour
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas, USA
| | - Sean Halper
- DEVCOM Army Research Laboratory, Adelphi, Maryland, USA
| | | | - Ross Thyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
4
|
Arahal DR, Bull CT, Christensen H, Chuvochina M, Dunlap C, del Carmen Montero-Calasanz M, Parker CT, Vandamme P, Ventosa A, Ventura S, Young P, Göker M. Judicial Opinion 130. Int J Syst Evol Microbiol 2024; 74:006414. [PMID: 38841989 PMCID: PMC11261725 DOI: 10.1099/ijsem.0.006414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
Opinion 130 deals with a Request for an Opinion asking the Judicial Commission to clarify whether the genus name Rhodococcus Zopf 1891 (Approved Lists 1980) is illegitimate. The Request is approved and an answer is given. The name Rhodococcus Zopf 1891 (Approved Lists 1980) is illegitimate because it is a later homonym of the validly published cyanobacterial name Rhodococcus Hansgirg 1884. The Judicial Commission also clarifies that it has the means to resolve such cases by conserving a name over an earlier homonym. It is concluded that the name Rhodococcus Zopf 1891 (Approved Lists 1980) is significantly more important than the name Rhodococcus Hansgirg 1884 and therefore the former is conserved over the latter. This makes the name Rhodococcus Zopf 1891 (Approved Lists 1980) legitimate.
Collapse
Affiliation(s)
- David R. Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Carolee T. Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, 211 Buckhout Lab, University Park, PA 16802, USA
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, QLD 4072, Australia
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, USDA/ARS/NCAUR, 1815 N. University St, 61604 Peoria, Illinois, USA
| | - Maria del Carmen Montero-Calasanz
- IFAPA Las Torres - Andalusian Institute of Agricultural and Fisheries Research and Training, Cra. Sevilla-Cazalla de la Sierra, 41200, Alcalá del Río, Sevilla, Spain
| | - Charles T. Parker
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Peter Vandamme
- BCCM/LMG, Laboratorium voor Microbiologie, Universiteit Gent (UGent) K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, C/. Prof. Garcia Gonzalez 2, ES-41012 Sevilla, Spain
| | - Stefano Ventura
- IRET-CNR, Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, and NBCF, National Biodiversity Future Center, Palermo, Italy
| | - Peter Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
5
|
Kaur J, Tiwari N, Asif MH, Dharmesh V, Naseem M, Srivastava PK, Srivastava S. Integrated genome-transcriptome analysis unveiled the mechanism of Debaryomyces hansenii-mediated arsenic stress amelioration in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133954. [PMID: 38484657 DOI: 10.1016/j.jhazmat.2024.133954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 04/07/2024]
Abstract
Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.
Collapse
Affiliation(s)
- Jasvinder Kaur
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Dharmesh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Kumar Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Tan PY, Kato Y, Konishi M. A Novel Strain of the Cyanobacterial Growth-promoting Bacterium, Rhodococcus sp. AF2108, Enhances the Growth of Synechococcus elongatus. Microbes Environ 2024; 39:ME24050. [PMID: 39756986 PMCID: PMC11821763 DOI: 10.1264/jsme2.me24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 01/07/2025] Open
Abstract
To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp. GA1226, Xanthobacter sp. AF2111, and Shewanella sp. OR151. A co-culture of S. elongatus with the most effective CGPB strain, Rhodococcus sp. AF2108, achieved a 8.5-fold increase in the chlo-rophyll content of cyanobacterial cells over that in a monoculture. A flow cytometric ana-lysis showed a 3.9-fold increase in the number of S. elongatus cells in the co-culture with Rhodococcus sp. AF2108. These results were attributed to increases in forward scattering and chlo-rophyll fluorescence intensities. The new Rhodococcus strain appears to be one of the most effective CGPBs described to date.
Collapse
Affiliation(s)
- Pei Yu Tan
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090–8507, Japan
| | - Yuta Kato
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090–8507, Japan
- Kankyo Daizen Co., Ltd., 438–7, Tanno-cho 3-ku, Kitami, Hokkaido, 099–2103, Japan
| | - Masaaki Konishi
- Department of Applied Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090–8507, Japan
| |
Collapse
|
7
|
Kracmarova-Farren M, Papik J, Uhlik O, Freeman J, Foster A, Leewis MC, Creamer C. Compost, plants and endophytes versus metal contamination: choice of a restoration strategy steers the microbiome in polymetallic mine waste. ENVIRONMENTAL MICROBIOME 2023; 18:74. [PMID: 37805609 PMCID: PMC10559404 DOI: 10.1186/s40793-023-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Finding solutions for the remediation and restoration of abandoned mining areas is of great environmental importance as they pose a risk to ecosystem health. In this study, our aim was to determine how remediation strategies with (i) compost amendment, (ii) planting a metal-tolerant grass Bouteloua curtipendula, and (iii) its inoculation with beneficial endophytes influenced the microbiome of metal-contaminated tailings originating from the abandoned Blue Nose Mine, SE Arizona, near Patagonia (USA). We conducted an indoor microcosm experiment followed by a metataxonomic analysis of the mine tailings, compost, and root samples. Our results showed that each remediation strategy promoted a distinct pattern of microbial community structure in the mine tailings, which correlated with changes in their chemical properties. The combination of compost amendment and endophyte inoculation led to the highest prokaryotic diversity and total nitrogen and organic carbon, but also induced shifts in microbial community structure that significantly correlated with an enhanced potential for mobilization of Cu and Sb. Our findings show that soil health metrics (total nitrogen, organic carbon and pH) improved, and microbial community changed, due to organic matter input and endophyte inoculation, which enhanced metal leaching from the mine waste and potentially increased environmental risks posed by Cu and Sb. We further emphasize that because the initial choice of remediation strategy can significantly impact trace element mobility via modulation of both soil chemistry and microbial communities, site specific, bench-scale preliminary tests, as reported here, can help determine the potential risk of a chosen strategy.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jakub Papik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - John Freeman
- Intrinsyx Environmental, Sunnyvale, CA, 94085, USA
| | | | - Mary-Cathrine Leewis
- U.S. Geological Survey, Menlo Park, CA, USA
- Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Quebec, QC, Canada
| | | |
Collapse
|
8
|
Ivshina I, Bazhutin G, Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front Microbiol 2022; 13:967127. [PMID: 36246215 PMCID: PMC9557007 DOI: 10.3389/fmicb.2022.967127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Active pharmaceutical ingredients present a substantial risk when they reach the environment and drinking water sources. As a new type of dangerous pollutants with high chemical resistance and pronounced biological effects, they accumulate everywhere, often in significant concentrations (μg/L) in ecological environments, food chains, organs of farm animals and humans, and cause an intense response from the aquatic and soil microbiota. Rhodococcus spp. (Actinomycetia class), which occupy a dominant position in polluted ecosystems, stand out among other microorganisms with the greatest variety of degradable pollutants and participate in natural attenuation, are considered as active agents with high transforming and degrading impacts on pharmaceutical compounds. Many representatives of rhodococci are promising as unique sources of specific transforming enzymes, quorum quenching tools, natural products and novel antimicrobials, biosurfactants and nanostructures. The review presents the latest knowledge and current trends regarding the use of Rhodococcus spp. in the processes of pharmaceutical pollutants’ biodegradation, as well as in the fields of biocatalysis and biotechnology for the production of targeted pharmaceutical products. The current literature sources presented in the review can be helpful in future research programs aimed at promoting Rhodococcus spp. as potential biodegraders and biotransformers to control pharmaceutical pollution in the environment.
Collapse
|
9
|
Iminova L, Delegan Y, Frantsuzova E, Bogun A, Zvonarev A, Suzina N, Anbumani S, Solyanikova I. Physiological and biochemical characterization and genome analysis of Rhodococcus qingshengii strain 7B capable of crude oil degradation and plant stimulation. BIOTECHNOLOGY REPORTS 2022; 35:e00741. [PMID: 35665370 PMCID: PMC9157199 DOI: 10.1016/j.btre.2022.e00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
Strain 7B grows in the presence of up to 10% sodium chloride and degrades crude oil, oil sludge and individual hydrocarbons. Over 15 days of the experiment, the strain utilized 51% of oil at 28°C and 24% at 45°C. When colonizing the wheat root, the strain forms biofilms in the calyptrogen sheath and at the base of the root hairs.
Rhodococci are typical soil inhabitants which take part in remediation of soil polluted with hydrocarbons. In this paper, we describe a new strain, Rhodococcus qingshengii 7B, which is capable of growth and hydrocarbon degradation at 45°C and in the presence of up to 10% NaCl in the medium. The genome of the 7B strain consists of a 6,278,280 bp chromosome and two plasmids. The circular plasmid is 103,992 bp in length. The linear plasmid is 416,450 bp in length. Genome analysis revealed the genes of degradation of various hydrocarbons, resistance to salt stress and plant growth promoting activity. This strain is promising for use in remediation of oil-contaminated soils, because it has a pronounced ability to utilize crude oil, oil sludge and individual hydrocarbons in a wide temperature range. Over 15 days of the experiment, the strain utilized 51% of crude oil at 28°C and 24% at 45 °С.
Collapse
|
10
|
Kuhl-Nagel T, Rodriguez PA, Gantner I, Chowdhury SP, Schwehn P, Rosenkranz M, Weber B, Schnitzler JP, Kublik S, Schloter M, Rothballer M, Falter-Braun P. Novel Pseudomonas sp. SCA7 Promotes Plant Growth in Two Plant Families and Induces Systemic Resistance in Arabidopsis thaliana. Front Microbiol 2022; 13:923515. [PMID: 35875540 PMCID: PMC9297469 DOI: 10.3389/fmicb.2022.923515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.
Collapse
Affiliation(s)
- Theresa Kuhl-Nagel
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patricia Antonia Rodriguez
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabella Gantner
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patrick Schwehn
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Baris Weber
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|