1
|
Cuny MAC, Gloder G, Bourne ME, Kalisvaart SN, Verreth C, Crauwels S, Cusumano A, Lievens B, Poelman EH. Parasitoid Calyx Fluid and Venom Affect Bacterial Communities in Their Lepidopteran Host Labial Salivary Glands. MICROBIAL ECOLOGY 2025; 88:33. [PMID: 40266381 PMCID: PMC12018505 DOI: 10.1007/s00248-025-02535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
The influence of gut and gonad bacterial communities on insect physiology, behaviour, and ecology is increasingly recognised. Parasitism by parasitoid wasps alters many physiological processes in their hosts, including gut bacterial communities. However, it remains unclear whether these changes are restricted to the gut or also occur in other tissues and fluids, and the mechanisms underlying such changes are unknown. We hypothesise that host microbiome changes result from the injection of calyx fluid (that contain symbiotic viruses known as polydnaviruses) and venom during parasitoid oviposition and that these effects vary by host tissue. To test this, we microinjected Pieris brassicae caterpillars with calyx fluid and venom from Cotesia glomerata, using saline solution and natural parasitism by C. glomerata as controls. We analysed changes in the bacterial community composition in the gut, regurgitate, haemolymph, and labial salivary glands of the host insects. Multivariate analysis revealed distinct bacterial communities across tissues and fluids, with high diversity in the salivary glands and haemolymph. Parasitism and injection of calyx fluid and venom significantly altered bacterial communities in the salivary glands. Differential abundance analysis showed that parasitism affected bacterial relative abundance in the haemolymph, and that Wolbachia was only found in the haemolymph of parasitized caterpillars. Altogether, our findings reveal that parasitism influences the host haemolymph microbiome, and both parasitism and injection of calyx fluid and venom drive changes in the bacterial community composition within the host salivary glands. Given that the composition of salivary glands can influence plant response to herbivory, we discuss these results in the broader context of plant-parasitoid interactions.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- CIRAD, UMR CBGP, 34988, Montpellier, France.
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266 A, 8057, Zürich, Switzerland
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
3
|
Bosorogan A, Cardenas-Poire E, Gonzales-Vigil E. Tomato defences modulate not only insect performance but also their gut microbial composition. Sci Rep 2023; 13:18139. [PMID: 37875520 PMCID: PMC10598054 DOI: 10.1038/s41598-023-44938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Plants protect their tissues from insect herbivory with specialized structures and chemicals, such as cuticles, trichomes, and metabolites contained therein. Bacteria inside the insect gut are also exposed to plant defences and can potentially modify the outcome of plant-insect interactions. To disentangle this complex multi-organism system, we used tomato mutants impaired in the production of plant defences (odorless-2 and jasmonic acid-insensitive1) and two cultivars (Ailsa Craig and Castlemart), exposed them to herbivory by the cabbage looper (Trichoplusia ni H.) and collected the insect frass for bacterial community analysis. While the epicuticular wax and terpene profiles were variable, the leaf fatty acid composition remained consistent among genotypes. Moreover, larval weight confirmed the negative association between plant defences and insect performance. The distinctive frass fatty acid profiles indicated that plant genotype also influences the lipid digestive metabolism of insects. Additionally, comparisons of leaf and insect-gut bacterial communities revealed a limited overlap in bacterial species between the two sample types. Insect bacterial community abundance and diversity were notably reduced in insects fed on the mutants, with Enterobacteriaceae being the predominant group, whereas putatively pathogenic taxa were found in wildtype genotypes. Altogether, these results indicate that plant defences can modulate insect-associated bacterial community composition.
Collapse
Affiliation(s)
- Andreea Bosorogan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada
| | | | - Eliana Gonzales-Vigil
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada.
| |
Collapse
|
4
|
Cuny MAC, Poelman EH. Evolution of koinobiont parasitoid host regulation and consequences for indirect plant defence. Evol Ecol 2022; 36:299-319. [PMID: 35663232 PMCID: PMC9156490 DOI: 10.1007/s10682-022-10180-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Tritrophic interactions among plants, herbivorous insects and their parasitoids have been well studied in the past four decades. Recently, a new angle has been uncovered: koinobiont parasitoids, that allow their host to keep feeding on the plant for a certain amount of time after parasitism, indirectly alter plant responses against herbivory via the many physiological changes induced in their herbivorous hosts. By affecting plant responses, parasitoids may indirectly affect the whole community of insects interacting with plants induced by parasitized herbivores and have extended effects on plant fitness. These important findings have renewed research interests on parasitoid manipulation of their host development. Parasitoids typically arrest their host development before the last instar, resulting in a lower final weight compared to unparasitized hosts. Yet, some parasitoids prolong their host development, leading to larger herbivores that consume more plant material than unparasitized ones. Furthermore, parasitoid host regulation is plastic and one parasitoid species may arrest or promote its host growth depending on the number of eggs laid, host developmental stage and species as well as environmental conditions. The consequences of plasticity in parasitoid host regulation for plant–insect interactions have received very little attention over the last two decades, particularly concerning parasitoids that promote their host growth. In this review, we first synthesize the mechanisms used by parasitoids to regulate host growth and food consumption. Then, we identify the evolutionary and environmental factors that influence the direction of parasitoid host regulation in terms of arrestment or promotion of host growth. In addition, we discuss the implication of different host regulation types for the parasitoid’s role as agent of plant indirect defence. Finally, we argue that the recent research interests about parasitoid plant-mediated interactions would strongly benefit from revival of research on the mechanisms, ecology and evolution of host regulation in parasitoids.
Collapse
Affiliation(s)
- Maximilien A. C. Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|