1
|
Maroney KJ, Ye Y, Sudenga SL, Diffalha SA, Banerjee NS, Shrestha S, Bansal A. Higher Expression of HPV16 Derived E7_LI Transcript Observed in Men With HIV and Recurrent Anal Cancer. J Med Virol 2025; 97:e70371. [PMID: 40317526 PMCID: PMC12048892 DOI: 10.1002/jmv.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Squamous cell carcinoma of the anus (SCCA) or anal cancer (AC) is an understudied cancer with a high occurrence rate in people with HIV (PWH), especially men having sex with men (MSM). Furthermore, AC recurs in approximately one-fourth of patients who undergo standard care with chemoradiation therapy (CRT). Using bulk RNA sequencing data of AC obtained from 12 patients with non-recurrent (NR, N = 9) or recurrent (R, N = 3) cancer, we previously showed upregulated expression of key immune genes in the NR compared to the R group. Although the main causative agent of AC is high-risk human papillomavirus (HPV), association of host and viral RNA transcript expression contributing to AC recurrence has not been extensively studied. The objective of the current study was to determine whether enrichment of specific HPV genotypes and/or HPV gene expression patterns differentiate the two groups and if any specific viral (HPV) and host (human) immune mediators correlate with each other. Using bulk RNA sequencing data and VIRTUS 2, we detected viral RNA reads mapping to seven high-risk and six low-risk HPV types, of which the high-risk HPV16 observed in 83% (10/12) AC tumors (7/9 NR and 3/3 R). Rate of all HPV genomes trended toward a decrease in NR AC isolates and correlation between HPV types was more commonly observed in low-risk ones. Analysis of HPV 16 gene expression profile showed a significantly lower positivity rate for a polycistronic transcript encoding for E7^L1 in the NR group (1/9, NR vs. 3/3, R, p < 0.05). An unbiased correlation analysis of HPV-human transcript expression showed a direct correlation between HPV transcripts and human genes involved in cell growth. The data also identified human transcripts showing an inverse correlation with HPV gene expression. These included genes involved in negative regulation of growth, proliferation, and immune response. Taken together, these data indicate that concurrent analyses of viral and host factors in the same tumor can identify potential new therapeutic targets to ameliorate cancer recurrence post-treatment.
Collapse
Affiliation(s)
- Kevin J. Maroney
- Department of Medicine, Division of Infectious Diseases, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yuanfan Ye
- Ob/gyn‐Maternal and Fetal Medicine, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Staci L. Sudenga
- Division of EpidemiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sameer Al Diffalha
- Anatomic Pathology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Nilam Sanjib Banerjee
- Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anju Bansal
- Department of Medicine, Division of Infectious Diseases, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Dey L, Chakraborty S. Supervised learning approaches for predicting Ebola-Human Protein-Protein interactions. Gene 2025; 942:149228. [PMID: 39828063 DOI: 10.1016/j.gene.2025.149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive database of all the PPIs between the Ebola virus and human proteins (EbolaInt). Our work focuses on the finding of some new protein-protein interactions between humans and the Ebola virus using some state- of-the-arts machine learning techniques. However, it is basically a two-class problem with a positive interacting dataset and a negative non-interacting dataset. These datasets contain various sequence-based human protein features such as structure of amino acid and conjoint triad and domain-related features. In this research, we have briefly discussed and used some well-known supervised learning approaches to predict PPIs between human proteins and Ebola virus proteins, including K-nearest neighbours (KNN), random forest (RF), support vector machine (SVM), and deep feed-forward multi-layer perceptron (DMLP) etc. We have validated our prediction results using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Our goal with this prediction is to compare all other models' accuracy, precision, recall, and f1-score for predicting these PPIs. In the result section, DMLP is giving the highest accuracy along with the prediction of 2655 potential human target proteins.
Collapse
Affiliation(s)
- Lopamudra Dey
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Department of Computer Science & Engineering, Meghnad Saha Institute of Technology, Kolkata, India
| | - Sanjay Chakraborty
- Department of Computer and Information Science (IDA), REAL, AIICS, Linköping University, Sweden; Department of Computer Science & Engineering, Techno International New Town, Kolkata, India.
| |
Collapse
|
3
|
Mensah‐Bonsu M, Doss C, Gloster C, Muganda P. Gene expression analysis identifies hub genes and pathways distinguishing fatal from survivor outcomes of Ebola virus disease. FASEB Bioadv 2024; 6:298-310. [PMID: 39399477 PMCID: PMC11467745 DOI: 10.1096/fba.2024-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 10/15/2024] Open
Abstract
The Ebola virus poses a severe public health threat, yet understanding factors influencing disease outcomes remains incomplete. Our study aimed to identify critical pathways and hub genes associated with fatal and survivor Ebola disease outcomes. We analyzed differentially expressed hub genes (DEGs) between groups with fatal and survival outcomes, as well as a healthy control group. We conducted additional analysis to determine the functions and pathways associated with these DEGs. We found 13,198 DEGs in the fatal and 12,039 DEGs in the survival group compared to healthy controls, and 1873 DEGs in the acute fatal and survivor groups comparison. Upregulated DEGs in the comparison between the acute fatal and survivor groups were linked to ECM receptor interaction, complement and coagulation cascades, and PI3K-Akt signaling. Upregulated hub genes identified from the acute fatal and survivor comparison (FGB, C1QA, SERPINF2, PLAT, C9, SERPINE1, F3, VWF) were enriched in complement and coagulation cascades; the downregulated hub genes (IL1B, 1L17RE, XCL1, CXCL6, CCL4, CD8A, CD8B, CD3D) were associated with immune cell processes. Hub genes CCL2 and F2 were unique to fatal outcomes, while CXCL1, HIST1H4F, and IL1A were upregulated hub genes unique to survival outcomes compared to healthy controls. Our results demonstrate for the first time the association of EVD outcomes to specific hub genes and their associated pathways and biological processes. The identified hub genes and pathways could help better elucidate Ebola disease pathogenesis and contribute to the development of targeted interventions and personalized treatment for distinct EVD outcomes.
Collapse
Affiliation(s)
- Melvin Mensah‐Bonsu
- Applied Science and TechnologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Christopher Doss
- Department of Electrical and Computer EngineeringNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Clay Gloster
- Department of Computer Systems TechnologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Perpetua Muganda
- Department of BiologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
4
|
Ratnasiri K, Zheng H, Toh J, Yao Z, Duran V, Donato M, Roederer M, Kamath M, Todd JPM, Gagne M, Foulds KE, Francica JR, Corbett KS, Douek DC, Seder RA, Einav S, Blish CA, Khatri P. Systems immunology of transcriptional responses to viral infection identifies conserved antiviral pathways across macaques and humans. Cell Rep 2024; 43:113706. [PMID: 38294906 PMCID: PMC10915397 DOI: 10.1016/j.celrep.2024.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiaying Toh
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhiyuan Yao
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Veronica Duran
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Michele Donato
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirit Einav
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Ye Y, Maroney KJ, Wiener HW, Mamaeva OA, Junkins AD, Burkholder GA, Sudenga SL, Khushman M, Al Diffalha S, Bansal A, Shrestha S. RNA-seq analysis identifies transcriptomic profiles associated with anal cancer recurrence among people living with HIV. Ann Med 2023; 55:2199366. [PMID: 37177979 PMCID: PMC10184583 DOI: 10.1080/07853890.2023.2199366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/17/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Chemoradiation therapy (CRT) is the standard of care for squamous cell carcinoma of the anus (SCCA), the most common type of anal cancer. However, approximately one fourth of patients still relapse after CRT. METHODS We used RNA-sequencing technology to characterize coding and non-coding transcripts in tumor tissues from CRT-treated SCCA patients and compare them between 9 non-recurrent and 3 recurrent cases. RNA was extracted from FFPE tissues. Library preparations for RNA-sequencing were created using SMARTer Stranded Total RNA-Seq Kit. All libraries were pooled and sequenced on a NovaSeq 6000. Function and pathway enrichment analysis was performed with Metascape and enrichment of gene ontology (GO) was performed with Gene Set Enrichment Analysis (GSEA). RESULTS There were 449 differentially expressed genes (DEGs) observed (390 mRNA, 12 miRNA, 17 lincRNA and 18 snRNA) between the two groups. We identified a core of upregulated genes (IL4, CD40LG, ICAM2, HLA-I (HLA-A, HLA-C) and HLA-II (HLA-DQA1, HLA-DRB5) in the non-recurrent SCCA tissue enriching to the gene ontology term 'allograft rejection', which suggests a CD4+ T cell driven immune response. Conversely, in the recurrent tissues, keratin (KRT1, 10, 12, 20) and hedgehog signaling pathway (PTCH2) genes involved in 'Epidermis Development,', were significantly upregulated. We identified miR-4316, that inhibit tumor proliferation and migration by repressing vascular endothelial growth factors, as being upregulated in non-recurrent SCCA. On the contrary, lncRNA-SOX21-AS1, implicated in the progression of many other cancers, was also found to be more common in our recurrent compared to non-recurrent SCCA. Our study identified key host factors which may drive the recurrence of SCCA and warrants further studies to understand the mechanism and evaluate their potential use in personalized treatment.Key MessageOur study used RNA sequencing (RNA-seq) to identify pivotal factors in coding and non-coding transcripts which differentiate between patients at risk for recurrent anal cancer after treatment. There were 449 differentially expressed genes (390 mRNA, 12 miRNA, 17 lincRNA and 18 snRNA) between 9 non-recurrent and 3 recurrent squamous cell carcinoma of anus (SCCA) tissues. The enrichment of genes related to allograft rejection was observed in the non-recurrent SCCA tissues, while the enrichment of genes related to epidermis development was positively linked with recurrent SCCA tissues.
Collapse
Affiliation(s)
- Yuanfan Ye
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Kevin J. Maroney
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Howard W. Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Olga A. Mamaeva
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Anna D. Junkins
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Greer A. Burkholder
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Staci L. Sudenga
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohd Khushman
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Al Diffalha
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anju Bansal
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| |
Collapse
|