1
|
Muneeb M, Khan EU, Ali M, Suleman M, Shaheen MS, Zafar MS, Ahmad S. Effects of replacing antibiotics with probiotics and antimicrobial peptides on performance, gut health, carcass traits, meat quality, and welfare in broilers infected with Eimeria and Clostridium perfringens. Trop Anim Health Prod 2025; 57:184. [PMID: 40272630 DOI: 10.1007/s11250-025-04441-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
This study evaluated the effectiveness of antibiotic, probiotic, and antimicrobial peptide (AMP) supplements in mitigating adverse consequences of necrotic enteritis (NE) in broilers. In total, 720 one-day-old (Ross-308) male broiler chicks were randomly assigned to five distinct feeding regimens (each treatment consisting of six replicates of 24 birds) including: (1) negative control (NC), fed only basal diet; (2) positive control (PC); with C. perfringens challenge + basal diet; (3) CP-Ab: challenged + virginiamycin (Stafac® 500) at 200 g/ton, (4) CP-Pro: challenged + 200 g/ton B. subtilis PB6 (Clostat dry®) probiotic additive, and (5) CP-LS2: challenged and fed an antimicrobial peptide (LassoTide Plus®) at 200 g/ton. The NE challenge was induced by administering 10X coccidia vaccine on day 15 followed by inoculation with a pathogenic field strain of C. perfringens type G (1 × 108 CFU/ml/ bird; 1 ml) on days 19 and 20 through oral gavage. Feeding AMP and probiotic to the NE-affected broilers resulted in 23.93% and 19.70% respectively higher body weight gain and 76.59% and 70.27% lower mortality compared to the PC. Similarly, supplementation with AMP improved (P < 0.05) gut morphology, carcass yield (5.82%), meat water holding capacity (14.73%), and reduced cooking loss (10.01%), dripping loss (20.87%), and shear force (25%) as compared to the PC. Additionally, the excreta score, litter quality and welfare attributes were significantly ameliorated (P < 0.05) with AMP addition. In conclusion, the findings suggest that AMP outperformed both virginiamycin and probiotic, demonstrating its potential as a superior substitute for AGPs in broilers.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashar Ali
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Suleman
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Shabir Shaheen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Shahbaz Zafar
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G, Jin W. Recombinant Lactococcus lactis Expressing Human LL-37 Prevents Deaths from Viral Infections in Piglets and Chicken. Probiotics Antimicrob Proteins 2024; 16:2150-2160. [PMID: 37743432 DOI: 10.1007/s12602-023-10155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Novel antibiotic substitutes are increasingly in demand in the animal husbandry industry. An oral recombinant Lactococcus lactis (L. lactis) expressing human LL-37 (oral LL-37) was developed and its safety and antiviral effectiveness in vivo was tested. In addition to impairing liposome integrity, LL-37 polypeptide from recombinant L. lactis could prevent the host cell infection by a variety of viruses, including recombinant SARS, SARS-CoV-2, Ebola virus, and vesicular stomatitis virus G. Subchronic toxicity studies performed on Sprague-Dawley rats showed that no cumulative toxicity was found during short-term intervention. Oral LL-37 treatment after the onset of fever could reduce mortality in piglets infected with porcine reproductive and respiratory syndrome virus. Moreover, body weight gain of piglets receiving treatment was progressively restored, and nucleic acid positive rebound was not undetected after discontinuation. Oral LL-37 consistently increased the lifespan of chickens infected with Newcastle viruses. These findings suggested a potential use of recombinantly modified microorganisms in veterinary medicine.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huihui Xu
- Jilin Yuanheyuan Bioengineering Co., Ltd. Changchun, Jilin Province, 130000, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Ghimire S, Subedi K, Zhang X, Wu C. Efficacy of Bacillus subtilis probiotic in preventing necrotic enteritis in broilers: a systematic review and meta-analysis. Avian Pathol 2024; 53:451-466. [PMID: 38776185 DOI: 10.1080/03079457.2024.2359596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-β and transforming growth factor-β4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.
Collapse
Affiliation(s)
- Shweta Ghimire
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Keshab Subedi
- Christiana Care Health Systems, Institute for Research on Equity and Community Health (iREACH), Wilmington, DE, USA
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Khan S, Khalid A, Yang R, Khalid F, Zahid MH, Liu H, Zhang Y, Wang Z. Effect of Bacillus subtilis Supplemented Diet on Broiler's Intestinal Microbiota and TLRs Gene Expression. Probiotics Antimicrob Proteins 2024; 16:2251-2268. [PMID: 37709981 DOI: 10.1007/s12602-023-10144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
This study aimed to investigate the effects of dietary Bacillus subtilis supplementation on gut microbiota diversity, digestive enzyme activity, and Toll-like receptor (TLR) expression in broiler chickens. A total of 240 "817" crossbred broiler chickens were randomly assigned to four groups: control (basal diet, BD), group I (BD + 300 g/d B. subtilis at 1.08 × 107 CFU/kg), group II (BD + 600 g/d B. subtilis at 2.16 × 107 CFU/kg), and group III (BD + 900 g/d B. subtilis at 3.24 × 107 CFU/kg). Gut microbiota analysis revealed significant improvements in the abundance of specific microorganisms in the treatment groups, with distinct variations in the core microorganisms between the groups. Notably, protease activity in the ileum was significantly increased in groups II (22.59%; p < 0.01) and III (14.49%; p < 0.05) compared to that in the control group. Moreover, significant up-regulation of TLR1A and TLR7 expression was observed in jejunum and cecum of the treated groups. Additionally, the TLR1B expression in the ileum was significantly increased. Furthermore, TLR2A and MyD88 transcription levels were significantly elevated in the jejunum, liver, spleen, and kidneys of experimental groups. Modulations in the expression of various TLR's (TLR2B, TLR3, TLR4, TLR15, and TLR21) were also observed in different organs. The spleen and kidney of B. subtilis-supplemented chickens exhibited upregulated expression of the proinflammatory cytokine IL-1β. Dietary supplementation with B. subtilis in broiler chickens improved the gut microbiota diversity and significantly upregulated TLR's expression in various organs. B. subtilis could be a valuable feed additive, contributing to improved disease management and overall health in broiler chickens.
Collapse
Affiliation(s)
- Salman Khan
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Fatima Khalid
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Muhammad Hamza Zahid
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Haozhe Liu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunhua Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
5
|
Gautam H, Shaik NA, Banaganapalli B, Popowich S, Subhasinghe I, Ayalew LE, Mandal R, Wishart DS, Tikoo S, Gomis S. Elevated levels of butyric acid in the jejunum of an animal model of broiler chickens: from early onset of Clostridium perfringens infection to clinical disease of necrotic enteritis. J Anim Sci Biotechnol 2024; 15:144. [PMID: 39487547 PMCID: PMC11531110 DOI: 10.1186/s40104-024-01105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Necrotic enteritis (NE) is an economically important disease of broiler chickens caused by Clostridium perfringens (CP). The pathogenesis, or disease process, of NE is still not clear. This study aimed to identify the alterations of metabolites and metabolic pathways associated with subclinical or clinical NE in CP infected birds and to investigate the possible variations in the metabolic profile of birds infected with different isolates of CP. METHODOLOGY Using a well-established NE model, the protein content of feed was changed abruptly before exposing birds to CP isolates with different toxin genes combinations (cpa, cpb2, netB, tpeL; cpa, cpb2, netB; or cpa, cpb2). Metabolomics analysis of jejunal contents was performed by a targeted, fully quantitative LC-MS/MS based assay. RESULTS This study detected statistically significant differential expression of 34 metabolites including organic acids, amino acids, fatty acids, and biogenic amines, including elevation of butyric acid at onset of NE in broiler chickens. Subsequent analysis of broilers infected with CP isolates with different toxin gene combinations confirmed an elevation of butyric acid consistently among 21 differentially expressed metabolites including organic acids, amino acids, and biogenic amines, underscoring its potential role during the development of NE. Furthermore, protein-metabolite network analysis revealed significant alterations in butyric acid and arginine-proline metabolisms. CONCLUSION This study indicates a significant metabolic difference between CP-infected and non-infected broiler chickens. Among all the metabolites, butyric acid increased significantly in CP-infected birds compared to non-infected healthy broilers. Logistic regression analysis revealed a positive association between butyric acid (coefficient: 1.23, P < 0.01) and CP infection, while showing a negative association with amino acid metabolism. These findings suggest that butyric acid could be a crucial metabolite linked to the occurrence of NE in broiler chickens and may serve as an early indicator of the disease at the farm level. Further metabolomic experiments using different NE animal models and field studies are needed to determine the specificity and to validate metabolites associated with NE, regardless of predisposing factors.
Collapse
Affiliation(s)
- Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Noor Ahmad Shaik
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Rupasri Mandal
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Suresh Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, 7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, S7N 5B4, Canada.
| |
Collapse
|
6
|
Xie Z, Yun Y, Yu G, Zhang X, Zhang H, Wang T, Zhang L. Bacillus subtilis alleviates excessive apoptosis of intestinal epithelial cells in intrauterine growth restriction suckling piglets via the members of Bcl-2 and caspase families. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6924-6932. [PMID: 38597265 DOI: 10.1002/jsfa.13525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The intestine is a barrier resisting various stress responses. Intrauterine growth restriction (IUGR) can cause damage to the intestinal barrier via destroying the balance of intestinal epithelial cells' proliferation and apoptosis. Bacillus subtilis has been reported to regulate intestinal epithelial cells' proliferation and apoptosis. Thus, the purpose of this study was to determine if B. subtilis could regulate intestinal epithelial cells' proliferation and apoptosis in intrauterine growth restriction suckling piglets. RESULTS Compared with the normal birth weight group, the IUGR group showed greater mean optical density values of Ki-67-positive cells in the ileal crypt (P < 0.05). IUGR resulted in higher ability of proliferation and apoptosis of intestinal epithelial cells, by upregulation of the messenger RNA (mRNA) or proteins expression of leucine rich repeat containing G protein coupled receptor 5, Caspase-3, Caspase-7, β-catenin, cyclinD1, B-cell lymphoma-2 associated agonist of cell death, and BCL2 associated X (P < 0.05), and downregulation of the mRNA or protein expression of B-cell lymphoma-2 and B-cell lymphoma-2-like 1 (P < 0.05). However, B. subtilis supplementation decreased the mRNA or proteins expression of leucine rich repeat containing G protein coupled receptor 5, SPARC related modular calcium binding 2, tumor necrosis factor receptor superfamily member 19, cyclinD1, Caspase-7, β-catenin, B-cell lymphoma-2 associated agonist of cell death, and Caspase-3 (P < 0.05), and increased the mRNA expression of B-cell lymphoma-2 (P < 0.05). CONCLUSION IUGR led to excessive apoptosis of intestinal epithelial cells, which induced compensatory proliferation. However, B. subtilis treatment prevented intestinal epithelial cells of IUGR suckling piglets from excessive apoptosis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zechen Xie
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
7
|
Babinska-Wensierska W, Motyka-Pomagruk A, Fondi M, Misztak AE, Mengoni A, Lojkowska E. Differences in the constituents of bacterial microbiota of soils collected from two fields of diverse potato blackleg and soft rot diseases incidences, a case study. Sci Rep 2024; 14:18802. [PMID: 39138329 PMCID: PMC11322387 DOI: 10.1038/s41598-024-69213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.
Collapse
Affiliation(s)
- Weronika Babinska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Marco Fondi
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Agnieszka Emilia Misztak
- Génétique et Physiologie des Microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland.
| |
Collapse
|
8
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
9
|
Xu Z, Feng X, Song Z, Li X, Li K, Li M, Wang X, Liu B, Sun C. Cell-Free Supernatant of Bacillus subtilis G2B9-Q Improves Intestinal Health and Modulates Immune Response to Promote Mouse Recovery in Clostridium perfringens Infection. Curr Microbiol 2024; 81:243. [PMID: 38935166 DOI: 10.1007/s00284-024-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/17/2024] [Indexed: 06/28/2024]
Abstract
Clostridium perfringens is one of the critical causative agents causing diarrhea in piglets, with significant economic losses to the pig industry. Under normal gut microbiota homeostasis and well-managed barns, diarrhea caused by C. perfringens could be controlled. Some reports show that probiotics, such as Bacillus subtilis, are beneficial in preventing necrotic enteritis (NE) in chickens, but few reports on piglets. Clostridium perfringens was found in the piglets' diarrhea with intestinal microbiota dysbiosis in our survey. Bacillus subtilis G2B9-Q, which was isolated from the feces of healthy pigs, was found to have anti-Clostridium activity after screening. Clostridium perfringens was used to challenge mice by intraperitoneal injection for modeling to evaluate the anti-infective activity of cell-free supernatant (CFS) of B. subtilis G2B9-Q and different concentrations of B. subtilis G2B9-Q by oral administration. The results showed that G2B9-Q can mitigate intestinal lesions caused by C. perfringens infection, reduce inflammatory reactions, and modulate intestinal microbiota. The CFS of G2B9-Q can alleviate the pathological damage of intestinal tissues caused by C. perfringens infection, reduce the concentration of TNF-α and IL-10 in the sera of mice, as well as the relative expression levels of alpha toxin (CPA), perfringolysin O (PFO) toxin, IL-10, IL-22, and TNF-α in the jejunum and colon tissues, and alleviate the changes in gut microbiota structure caused by C. perfringens infection, which showed better therapeutic effects and indicated that the metabolites of G2B9-Q are essential mediators for their beneficial effects. Therefore, the CFS of G2B9-Q could potentially replace antibiotics in treating C. perfringens infection.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Zhanyun Song
- Changchun Customs District, Changchun, Jilin, China
| | - Xiang Li
- Changchun Customs District, Changchun, Jilin, China
| | - Ke Li
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Mengjiao Li
- Changchun Customs District, Changchun, Jilin, China
| | | | - Bo Liu
- Changchun Customs District, Changchun, Jilin, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China.
| |
Collapse
|
10
|
Chen P, Lv H, Du M, Liu W, Che C, Zhao J, Liu H. Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103661. [PMID: 38547540 PMCID: PMC11000119 DOI: 10.1016/j.psj.2024.103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuanyan Che
- College of Animal Science and Technology, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Xu H, Zhang X, Li P, Luo Y, Fu J, Gong L, Lv Z, Guo Y. Effects of Tannic Acid Supplementation on the Intestinal Health, Immunity, and Antioxidant Function of Broilers Challenged with Necrotic Enteritis. Antioxidants (Basel) 2023; 12:1476. [PMID: 37508014 PMCID: PMC10376868 DOI: 10.3390/antiox12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridium perfringens causes necrotic enteritis (NE) after proliferation in the intestine of poultry, resulting in considerable losses to the poultry industry. This study aimed to investigate the impact of tannic acid on the antioxidant, immunity, and gut health of broilers with NE. In the experiment, 630 one-day-old Cobb500 male chicks were randomly divided into six treatment groups, with seven replicate cages and with fifteen birds in each cage. The treatment groups were as follows: control group (NC), challenged group (PC), and challenged NE chickens treated with 250, 500, 750, and 1000 mg/kg tannic acid (PTA1, PTA2, PTA3, and PTA4, respectively). To induce NE, coccidia vaccine and Clostridium perfringens were administered on day 19 and days 22-28, respectively. Indexes related to antioxidant, immune, and intestinal health were measured on days 28 and 35. During the infection period, we observed significant increases in fecal water content, D-LA, TNF-α, and malondialdehyde concentrations (p < 0.05). Conversely, significant decreases were noted in chyme pH and in T-AOC, IL-4, and IL-10 concentrations (p < 0.05). The addition of tannic acid exhibited a linear decrease in fecal water content and TNF-α concentration (p < 0.05). Furthermore, tannic acid supplementation resulted in a quadratic curve decrease in D-LA concentration and linear increases in T-AOC, IL-4, and IL-10 (p < 0.05). Cecal microbiological analysis revealed that Ruminococcaceae and Butyricimona were dominant in PTA3. In conclusion, the dietary addition of tannic acid may reduce the negative effects of NE by increasing antioxidant and anti-inflammatory capacity, improving the intestinal barrier, and regulating the intestinal flora.
Collapse
Affiliation(s)
- Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Wang Y, Xu Y, Cao G, Zhou X, Wang Q, Fu A, Zhan X. Bacillus subtilis DSM29784 attenuates Clostridium perfringens-induced intestinal damage of broilers by modulating intestinal microbiota and the metabolome. Front Microbiol 2023; 14:1138903. [PMID: 37007491 PMCID: PMC10060821 DOI: 10.3389/fmicb.2023.1138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Necrotic enteritis (NE), especially subclinical NE (SNE), without clinical symptoms, in chicks has become one of the most threatening problems to the poultry industry. Therefore, increasing attention has been focused on the research and application of effective probiotic strains as an alternative to antibiotics to prevent SNE in broilers. In the present study, we evaluated the effects of Bacillus subtilis DSM29784 (BS) on the prevention of subclinical necrotic enteritis (SNE) in broilers. A total of 480 1-day-old broiler chickens were randomly assigned to four dietary treatments, each with six replicates pens of twenty birds for 63 d. The negative (Ctr group) and positive (SNE group) groups were only fed a basal diet, while the two treatment groups received basal diets supplemented with BS (1 × 109 colony-forming units BS/kg) (BS group) and 10mg/kg enramycin (ER group), respectively. On days 15, birds except those in the Ctr group were challenged with 20-fold dose coccidiosis vaccine, and then with 1 ml of C. perfringens (2 × 108) at days 18 to 21 for SNE induction. BS, similar to ER, effectively attenuated CP-induced poor growth performance. Moreover, BS pretreatment increased villi height, claudin-1 expression, maltase activity, and immunoglobulin abundance, while decreasing lesional scores, as well as mucosal IFN-γ and TNF-α concentrations. In addition, BS pretreatment increased the relative abundance of beneficial bacteria and decreased that of pathogenic species; many lipid metabolites were enriched in the cecum of treated chickens. These results suggest that BS potentially provides active ingredients that may serve as an antibiotic substitute, effectively preventing SNE-induced growth decline by enhancing intestinal health in broilers.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | | | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Wang
- Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| | - Xiuan Zhan
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| |
Collapse
|
14
|
Li A, Ding J, Shen T, Liang Y, Wei F, Wu Y, Iqbal M, Kulyar MFEA, Li K, Wei K. Radix paeoniae alba polysaccharide attenuates lipopolysaccharide-induced intestinal injury by regulating gut microbiota. Front Microbiol 2023; 13:1064657. [PMID: 36713189 PMCID: PMC9878331 DOI: 10.3389/fmicb.2022.1064657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence indicated that oxidative stress is closely related to inflammation and the progression of multiple chronic diseases, which seriously threaten the host health. Currently, multiple plant-derived polysaccharides have been demonstrated to ameliorate the negative effects of oxidative stress on the host, but the potential protective effect of radix paeoniae alba polysaccharide (RPAP) on host have not been well characterized. Here, we investigated whether different doses of RPAP administration could alleviate lipopolysaccharide (LPS)-induced intestinal injury and gut microbial dysbiosis in mice. Results indicated that RPAP administration effectively alleviated LPS-induced intestinal damage in dose dependent. Additionally, amplicon sequencing showed that RPAP administration reversed the significant decrease in gut microbial diversity caused by LPS exposure and restored the alpha-diversity indices to normal levels. Microbial taxonomic investigation also indicated that LPS exposure resulted in significant changes in the gut microbial composition, characterized by a decrease in the abundances of beneficial bacteria (Lactobacillus, Alistipes, Bacillus, Rikenellaceae_RC9_gut_group, etc.) and an increase in the contents of pathogenic bacteria (Klebsiella, Helicobacter, Enterococcus, etc.). However, RPAP administration, especially in high doses, could improve the composition of the gut microbiota by altering the abundance of some bacteria. Taken together, this study demonstrated that RPAP administration could ameliorate LPS-induced intestinal injury by regulating gut microbiota. Meanwhile, this also provides the basis for the popularization and application of RPAP and alleviating oxidative stress from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxue Ding
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Shen
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Kun Li,
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China,*Correspondence: Kunhua Wei,
| |
Collapse
|
15
|
Li A, Wang M, Zhang Y, Lin Z, Xu M, Wang L, Kulyar MFEA, Li J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front Vet Sci 2023; 9:1099150. [PMID: 36713867 PMCID: PMC9875379 DOI: 10.3389/fvets.2022.1099150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China,*Correspondence: Jiakui Li ✉
| |
Collapse
|
16
|
Du M, Chen Y, Wang S, Zhao H, Wen C, Zhou Y. Effects of dietary palygorskite supplementation on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers. Front Microbiol 2022; 13:985784. [PMID: 36090069 PMCID: PMC9453597 DOI: 10.3389/fmicb.2022.985784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate the effects of palygorskite (PAL) as an alternative to antibiotic on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers. A total of 360 1-day-old male Ross-308 broilers were randomly allotted to three treatments with eight replicates. Broilers in the three groups were designated as follows: basal diet (CON group), basal diet+50 mg/kg chlorotetracycline (ANT group), and basal diet+ 10 g/kg PAL (PAL group). Supplementing PAL reduced feed to gain ratio in broilers during 22 to 42 days of age (P < 0.05), with its value being similar to that of the ANT group (P > 0.05). Broilers fed a PAL-supplemented diet exerted decreased contents of interferon-γ (IFN-γ) and interleukin-1β in serum, and the same reduction was found in jejunal IFN-γ level, when compared to the CON group (P < 0.05). Moreover, compared with the CON group, broilers after PAL treatment had a lower malondialdehyde content in jejunal mucosa (P < 0.05). Supplementing PAL elevated jejunal villus height (VH) and ratio of VH to crypt depth compared with the ANT group (P < 0.05). Cecal microbiota communities among the three groups were significant different, as demonstrated by distinct clusters from partial least squares discriminant analysis, although dietary treatments had no significant effects on the bacterial richness and diversity indices (P > 0.05). At genus level, the addition of PAL increased the relative abundance of norank_f__Barnesiellaceae and decreased that of unclassified_f__Oscillospiraceae in cecal digesta compared with those in the CON group (P < 0.05); the proportion of genus norank_f__Barnesiellaceae was increased by PAL treatment when compared with the ANT group (P < 0.05). Moreover, spearman's correlations showed that the modulation of cecal microflora composition by PAL supplementation was closely correlated with the promotion of growth performance (feed to gain ratio) and intestinal health-related (contents of malondialdehyde and IFN-γ, and VH value in jejunum) variables of broilers (P < 0.05). Taken together, dietary PAL could improve the growth performance, antioxidant capacity, and immune status, as well as intestinal barrier function in broilers, which might be partially associated with the alteration of cecal microbiota. Moreover, dietary PAL may be a promising alternative to antibiotic growth promoter for broilers.
Collapse
|
17
|
Microbiota and Transcriptomic Effects of an Essential Oil Blend and Its Delivery Route Compared to an Antibiotic Growth Promoter in Broiler Chickens. Microorganisms 2022; 10:microorganisms10050861. [PMID: 35630307 PMCID: PMC9147064 DOI: 10.3390/microorganisms10050861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
This study evaluated the effect of the delivery of a commercial essential oil blend containing the phytonutrients star anise, cinnamon, rosemary, and thyme oil (via different routes) on broiler chickens’ ileal and ceca microbiota and liver transcriptome compared to an antibiotic growth promoter. Eggs were incubated and allocated into three groups: non-injected, in ovo saline, and in ovo essential oil. On day 18 of incubation, 0.2 mL of essential oil in saline (dilution ratio of 2:1) or saline alone was injected into the amnion. At hatch, chicks were assigned to post-hatch treatment combinations: (A) a negative control (corn-wheat-soybean diet), (B) in-feed antibiotics, (C) in-water essential oil (250 mL/1000 L of drinking water), (D) in ovo saline, (E) in ovo essential oil, and (F) in ovo essential oil plus in-water essential oil in eight replicate cages (six birds/cage) and raised for 28 days. On days 21 and 28, one and two birds per cage were slaughtered, respectively, to collect gut content and liver tissues for further analysis. Alpha and beta diversity differed significantly between ileal and ceca samples but not between treatment groups. In-feed antibiotic treatment significantly increased the proportion of specific bacteria in the family Lachnospiraceae while reducing the proportion of bacteria in the genus Christensenellaceae in the ceca, compared to other treatments. Sex-controlled differential expression of genes related to cell signaling and tight junctions were recorded. This study provides data that could guide the use of these feed additives and a foundation for further research.
Collapse
|