1
|
Hernández-Pelegrín L, Huditz HI, García-Castillo P, de Ruijter NCA, van Oers MM, Herrero S, Ros VID. Covert RNA viruses in medflies differ in their mode of transmission and tissue tropism. J Virol 2024; 98:e0010824. [PMID: 38742874 PMCID: PMC11237731 DOI: 10.1128/jvi.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have demonstrated the presence of covert viral infections in insects. These infections can be transmitted in insect populations via two main routes: vertical from parents to offspring, or horizontal between nonrelated individuals. Thirteen covert RNA viruses have been described in the Mediterranean fruit fly (medfly). Some of these viruses are established in different laboratory-reared and wild medfly populations, although variations in the viral repertoire and viral levels have been observed at different time points. To better understand these viral dynamics, we characterized the prevalence and levels of covert RNA viruses in two medfly strains, assessed the route of transmission of these viruses, and explored their distribution in medfly adult tissues. Altogether, our results indicated that the different RNA viruses found in medflies vary in their preferred route of transmission. Two iflaviruses and a narnavirus are predominantly transmitted through vertical transmission via the female, while a nodavirus and a nora virus exhibited a preference for horizontal transmission. Overall, our results give valuable insights into the viral tropism and transmission of RNA viruses in the medfly, contributing to the understanding of viral dynamics in insect populations. IMPORTANCE The presence of RNA viruses in insects has been extensively covered. However, the study of host-virus interaction has focused on viruses that cause detrimental effects to the host. In this manuscript, we uncovered which tissues are infected with covert RNA viruses in the agricultural pest Ceratitis capitata, and which is the preferred transmission route of these viruses. Our results showed that vertical and horizontal transmission can occur simultaneously, although each virus is transmitted more efficiently following one of these routes. Additionally, our results indicated an association between the tropism of the RNA virus and the preferred route of transmission. Overall, these results set the basis for understanding how viruses are established and maintained in medfly populations.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Hannah-Isadora Huditz
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Pablo García-Castillo
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Norbert C. A. de Ruijter
- Laboratory of Cell and Developmental Biology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Vera I. D. Ros
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Buhlke EG, Hobbs AM, Rajput S, Rokusek B, Carlson DJ, Gillan C, Carlson KA. Characterization of Cross-Species Transmission of Drosophila melanogaster Nora Virus. Life (Basel) 2022; 12:1913. [PMID: 36431048 PMCID: PMC9697521 DOI: 10.3390/life12111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster Nora virus (DmNV) is a novel picorna-like virus first characterized in 2006. Since then, Nora virus has been detected in several non-Drosophila species, including insects in the Orders Hymenoptera, Lepidoptera, Coleoptera, and Orthoptera. The objective of this study was to determine if DmNV could infect individuals of other species of invertebrates besides D. melanogaster. The presence of DmNV in native invertebrates and commercially available stocks was determined. Laboratory-reared D. yakuba, D. mercatorum, Gryllodes sigillatus, Tenebrio molitor, Galleria mellonella, and Musca domestica were intentionally infected with DmNV. In addition, native invertebrates were collected and D. melanogaster stocks were purchased and screened for DmNV presence using reverse transcription-polymerase chain reaction (RT-PCR) before being intentionally infected for study. All Drosophila species and other invertebrates, except M. domestica, that were intentionally infected with DmNV ended up scoring positive for the virus via RT-PCR. DmNV infection was also detected in three native invertebrates (Spilosoma virginica, Diplopoda, and Odontotaenius disjunctus) and all commercially available stocks tested. These findings suggest that DmNV readily infects individuals of other species of invertebrates, while also appearing to be an endemic virus in both wild and laboratory D. melanogaster populations. The detection of DmNV in commercially available stocks presents a cautionary message for scientists using these stocks in studies of virology and immunology.
Collapse
Affiliation(s)
- Ella G. Buhlke
- Central City Senior High School, 1510 28th Street, Central City, NE 68826, USA
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Kearney, NE 68849, USA
| | - Alexis M. Hobbs
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Kearney, NE 68849, USA
| | - Sunanda Rajput
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Kearney, NE 68849, USA
| | - Blase Rokusek
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Kearney, NE 68849, USA
| | - Darby J. Carlson
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Kearney, NE 68849, USA
| | - Chelle Gillan
- Central City Senior High School, 1510 28th Street, Central City, NE 68826, USA
| | - Kimberly A. Carlson
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Kearney, NE 68849, USA
| |
Collapse
|
3
|
Li T, Li H, Wu Y, Li S, Yuan G, Xu P. Identification of a Novel Densovirus in Aphid, and Uncovering the Possible Antiviral Process During Its Infection. Front Immunol 2022; 13:905628. [PMID: 35757766 PMCID: PMC9218065 DOI: 10.3389/fimmu.2022.905628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Densoviruses (DVs) are single-stranded DNA viruses and exclusively happen in invertebrates. Most of DVs reported in insects are pathogenic to their native hosts, however, no pathogenic effect of them has been examined in vertebrates. Hence, DVs are the potential agents used in pest managements. Aphids are the primary vectors of plant viruses. In this study, we identified a novel DV in Chinese Sitobion miscanthi population, provisionally named “Sitobion miscanthi densovirus” (SmDV). Taxonomically, SmDV belongs to genus Hemiambidensovirus. In S. miscanthi, SmDV is hosted in diverse cells and can be horizontally transmitted via wheat feeding. Subject to SmDV, aphids activate their intrinsic antiviral autophagy pathway. Grouped with ascorbate and aldarate metabolism, chlorophyll metabolism, p450 related drug metabolism, and retinoid metabolism, aphids form a complex immune network response to the infection of SmDV. Obviously, it works as elder aphids still alive even they contain the highest examined concentration of SmDV. This study provides a foundation for the identifications of novel DVs, and further improves the understanding of the molecular interactions between insects and DVs.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|