1
|
Wang X, Huang Z, Xing L, Shang L, Jiang J, Deng C, Yu W, Peng L, Yang H, Zheng X, Liu X, Yang H, Chen Y, Li Y, Liu J, Xie X, Xu W, Xia X, Liu Z, Liu W, Jiang S, Zeng Y, Lu L, Wang J. STING agonist-based ER-targeting molecules boost antigen cross-presentation. Nature 2025; 641:202-210. [PMID: 40140567 PMCID: PMC12043507 DOI: 10.1038/s41586-025-08758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
CD8+ T cell immune responses are critical for combating infectious diseases and tumours1-3. Antigen cross-presentation, primarily occurring at the endoplasmic reticulum (ER) of dendritic cells, is essential for protein-based vaccines to induce CD8+ T cell responses4. Current efforts have focused on antigen delivery at the tissue and cellular levels, whereas subcellular delivery has been limited to facilitating antigen escape from lysosomes into the cytosol. In the absence of a small-sized high-affinity ER-targeting molecule, the importance of the 'last mile' from the cytosol to the ER remains elusive. Here we developed stimulator of interferon genes (STING) agonist-based ER-targeting molecules (SABER), which effectively deliver antigens to the ER and cluster key machinery in cross-presentation to form microreactors by folding the ER membrane. Conjugation of SABER to various antigens substantially enhances the induction of CD8+ T cell immune responses to tumour neoantigens and conserved viral epitopes, far exceeding that achieved by mixtures of antigens with STING agonists or conventional adjuvants. SABER also retains a potent adjuvant effect, effectively enhancing the ability of a SARS-CoV-2 subunit vaccine to induce broadly neutralizing antibodies. This study provides a high-affinity ER-targeting delivery system and vaccine adjuvant, demonstrating that precise subcellular delivery targeting the last mile of cross-presentation can lead to a qualitative leap.
Collapse
Affiliation(s)
- Xiafeng Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhangping Huang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Liru Shang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caiguanxi Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Xiaohong Zheng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinmin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haolan Yang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zezhong Liu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Yingyue Zeng
- School of Life Sciences, Liaoning University, Shenyang, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China.
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Jena NR, Pant S. Peptide inhibitors derived from the nsp7 and nsp8 cofactors of nsp12 targeting different substrate binding sites of nsp12 of the SARS-CoV-2. J Biomol Struct Dyn 2024; 42:7077-7089. [PMID: 37434315 DOI: 10.1080/07391102.2023.2235012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
SARS-COV-2 is responsible for the COVID-19 pandemic, which has infected more than 767 million people worldwide including about 7 million deaths till 5 June 2023. Despite the emergency use of certain vaccines, deaths due to COVID-19 have not yet stopped completed. Therefore, it is imperative to design and develop drugs that can be used to treat patients suffering from COVID-19. Here, two peptide inhibitors derived from nsp7 and nsp8 cofactors of nsp12 have been shown to block different substrate binding sites of nsp12 that are mainly responsible for the replication of the viral genome of SARS-CoV-2. By using the docking, molecular dynamics (MD), and MM/GBSA techniques, it is shown that these inhibitors can bind to multiple binding sites of nsp12, such as the interface of nsp7 and nsp12, interface of nsp8 and nsp12, RNA primer entry site, and nucleoside triphosphate (NTP) entry site. The relative binding free energies of the most stable protein-peptide complexes are found to lie between ∼-34.20 ± 10.07 to -59.54 ± 9.96 kcal/mol. Hence, it is likely that these inhibitors may bind to different sites of nsp12 to block the access of its cofactors and the viral genome, thereby affecting the replication. It is thus proposed that these peptide inhibitors may be further developed as potential drug candidates to suppress the viral loads in COVID-19 patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
3
|
Lee YS, Bang YJ, Yoo S, Park SI, Park HJ, Kwak HW, Bae SH, Park HJ, Kim JY, Youn SB, Roh G, Lee S, Kwon SP, Bang EK, Keum G, Nam JH, Hong SH. Analysis of the Immunostimulatory Effects of Cytokine-Expressing Internal Ribosome Entry Site-Based RNA Adjuvants and Their Applications. J Infect Dis 2024; 229:1408-1418. [PMID: 37711050 DOI: 10.1093/infdis/jiad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Developing new adjuvants that can effectively induce humoral and cellular immune responses while broadening the immune response is of great value. In this study, we aimed to develop single-stranded RNA adjuvants expressing (1) granulocyte monocyte colony-stimulating factor or (2) interleukin 18 based on the encephalomyocarditis virus internal ribosome entry site; we also tested their efficacy in combination with ovalbumin or inactivated influenza vaccines. Notably, cytokine-expressing RNA adjuvants increased the expression of antigen-presenting cell activation markers in mice. Specifically, when combined with ovalbumin, RNA adjuvants expressing granulocyte monocyte colony-stimulating factor increased CD4+ T-cell responses, while those expressing interleukin 18 increased CD8+ T-cell responses. Cytokine-expressing RNA adjuvants further increased the frequency of polyclonal T cells with the influenza vaccine and reduced the clinical illness scores and weight loss of mice after viral challenge. Collectively, our results suggest that cytokine-expressing RNA adjuvants can be applied to protein-based or inactivated vaccines to increase their efficacy.
Collapse
Affiliation(s)
- Yu-Sun Lee
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Yoo-Jin Bang
- Department of Biotechnology
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Soyeon Yoo
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Sang-In Park
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Hyo-Jung Park
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Hye Won Kwak
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Seo-Hyeon Bae
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | | | - Jae-Yong Kim
- Department of Biotechnology
- Central Research Institute, SML Biopharm, Gwangmyeong
| | - Sue-Bean Youn
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Gahyun Roh
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Seonghyun Lee
- Department of Biotechnology
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
| | - Sung Pil Kwon
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul
| | - Jae-Hwan Nam
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea, Bucheon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Cioffi VB, de Castro-Amarante MF, Lulla A, Andreata-Santos R, Cruz MC, Moreno ACR, de Oliveira Silva M, de Miranda Peres B, de Freitas Junior LHG, Moraes CB, Durigon EL, Gordon NC, Hyvönen M, de Souza Ferreira LC, Balan A. SARS-CoV-2 Spike protein peptides displayed in the Pyrococcus furiosus RAD system preserve epitopes antigenicity, immunogenicity, and virus-neutralizing activity of antibodies. Sci Rep 2023; 13:16821. [PMID: 37798298 PMCID: PMC10556064 DOI: 10.1038/s41598-023-43720-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Amongst the potential contribution of protein or peptide-display systems to study epitopes with relevant immunological features, the RAD display system stands out as a highly stable scaffold protein that allows the presentation of constrained target peptides. Here, we employed the RAD display system to present peptides derived from the SARS-CoV-2 Spike (S) protein as a tool to detect specific serum antibodies and to generate polyclonal antibodies capable of inhibiting SARS-CoV-2 infectivity in vitro. 44 linear S-derived peptides were genetically fused with the RAD scaffold (RAD-SCoV-epitopes) and screened for antigenicity with sera collected from COVID-19-infected patients. In a second step, selected RAD-SCoV-epitopes were used to immunize mice and generate antibodies. Phenotypic screening showed that some of these antibodies were able to recognize replicating viral particles in VERO CCL-81 and most notably seven of the RAD-SCoV-epitopes were able to induce antibodies that inhibited viral infection. Our findings highlight the RAD display system as an useful platform for the immunological characterization of peptides and a potentially valuable strategy for the design of antigens for peptide-based vaccines, for epitope-specific antibody mapping, and for the development of antibodies for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Victor Bolsanelli Cioffi
- Laboratory of Applied Structural Biology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Maria Fernanda de Castro-Amarante
- Laboratory of Vaccine Development, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Mario Costa Cruz
- Core Facilities to Support Research (CEFAP), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, São Paulo, 173005508-000, Brazil
| | - Ana Carolina Ramos Moreno
- Laboratory of Vaccine Development, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
- Vaccine Development Laboratory, Butantan Institute, Av. Vital Brasil, 1500, São Paulo, SP, 05503-900, Brazil
| | - Mariângela de Oliveira Silva
- Phenotypic Screening Platform, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Bianca de Miranda Peres
- Phenotypic Screening Platform, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Lucio Holanda Gondim de Freitas Junior
- Phenotypic Screening Platform, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Carolina Borsoi Moraes
- Phenotypic Screening Platform, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
- Institut Pasteur de São Paulo, Av. Prof. Lucio Martins Rodrigues, 370, São Paulo, 05508-020, Brazil
| | - Nicola Coker Gordon
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, University of São Paulo, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil
- Institut Pasteur de São Paulo, Av. Prof. Lucio Martins Rodrigues, 370, São Paulo, 05508-020, Brazil
| | - Andrea Balan
- Laboratory of Applied Structural Biology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
Zhang Y, Kang X, Liu S, Han P, Lei W, Xu K, Xu Z, Gao Z, Zhou X, An Y, Han Y, Liu K, Zhao X, Dai L, Wang P, Wu G, Qi J, Xu K, Gao GF. Broad protective RBD heterotrimer vaccines neutralize SARS-CoV-2 including Omicron sub-variants XBB/BQ.1.1/BF.7. PLoS Pathog 2023; 19:e1011659. [PMID: 37721934 PMCID: PMC10538664 DOI: 10.1371/journal.ppat.1011659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/28/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
SARS-CoV-2 variants with severe immune evasion are a major challenge for COVID-19 prevention, especially the circulating Omicron XBB/BQ.1.1/BF.7 strains. Thus, the next-generation of broad-spectrum vaccines are urgently needed. Previously, we developed a COVID-19 protein subunit vaccine, ZF2001, based on the RBD-homodimer as the immunogen. To adapt SARS-CoV-2 variants, we developed chimeric RBD-heterodimers to induce broad immune responses. In this study, we further explored the concept of tandem RBD homotrimer and heterotrimer. Prototype SARS-CoV-2 RBD-homotrimer, prototype-Delta-BA.1 (PDO) RBD-heterotrimer and Delta-BA.2-BA.5 (DBA2BA5) RBD-heterotrimer were designed. Biochemical and cryo-EM structural characterization demonstrated total epitope exposure of the RBD-trimers. In mouse experiments, PDO and DBA2BA5 elicited broad SARS-CoV-2 neutralization. Potent protection against SARS-CoV-2 variants was observed in challenge assays and was correlated with neutralizing antibody titer. This study validated the design strategy of tandem RBD-heterotrimers as multivalent immunogens and presented a promising vaccine candidate, DBA2BA5, eliciting broad-spectrum immune responses, including against the circulating XBB/BF.7/BQ.1.1.
Collapse
Affiliation(s)
- Yanfang Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinrui Kang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Liu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhengrong Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Xuemei Zhou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, China
| | - Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Kwak HW, Park HJ, Jung SY, Oh EY, Park SI, Kim Y, Park HJ, Park S, Kim YJ, Ko HL, Lee JA, Won H, Hwang YH, Kim SY, Kim SE, Bae SE, Yoon M, Kim JO, Song M, Lee SJ, Seo KW, Lee K, Kim D, Kim H, Lee SM, Hong SH, Nam JH. Recombinant measles virus encoding the spike protein of SARS-CoV-2 efficiently induces Th1 responses and neutralizing antibodies that block SARS-CoV-2 variants. Vaccine 2023; 41:1892-1901. [PMID: 36792434 PMCID: PMC9902292 DOI: 10.1016/j.vaccine.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Owing to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, the development of effective and safe vaccines has become a priority. The measles virus (MeV) vaccine is an attractive vaccine platform as it has been administered to children for more than 40 years in over 100 countries. In this study, we developed a recombinant MeV expressing the full-length SARS-CoV-2 spike protein (rMeV-S) and tested its efficacy using mouse and hamster models. In hCD46Tg mice, two-dose rMeV-S vaccination induced higher Th1 secretion and humoral responses than one-dose vaccination. Interestingly, neutralizing antibodies induced by one-dose and two-dose rMeV-S immunization effectively blocked the entry of the α, β, γ, and δ variants of SARS-CoV-2. Furthermore, two-dose rMeV-S immunization provided complete protection against SARS-CoV-2 in the hamster model. These results suggest the potential of rMeV-S as a vaccine candidate for targeting SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hye Won Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; SML biopharm, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Yeon Jung
- Department of R&D, SK bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Eun Young Oh
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-In Park
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Kangwon-do, Republic of Korea
| | - Yeonhwa Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; SML biopharm, Gyeonggi-do, Bucheon, Republic of Korea
| | - Sohyun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Hae Li Ko
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Kangwon-do, Republic of Korea
| | - Jung-Ah Lee
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Hyeran Won
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Yun-Ho Hwang
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Seo Yeon Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Se Eun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Seoung Eun Bae
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Minhyuk Yoon
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Su Jeen Lee
- Department of R&D, SK bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Ki-Weon Seo
- Department of R&D, SK bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Kunse Lee
- Department of R&D, SK bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Republic of Korea
| | - Hun Kim
- Department of R&D, SK bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
| |
Collapse
|
7
|
Development of Next Generation Vaccines against SARS-CoV-2 and Variants of Concern. Viruses 2023; 15:v15030624. [PMID: 36992333 PMCID: PMC10057551 DOI: 10.3390/v15030624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 has caused the COVID-19 pandemic, with over 673 million infections and 6.85 million deaths globally. Novel mRNA and viral-vectored vaccines were developed and licensed for global immunizations under emergency approval. They have demonstrated good safety and high protective efficacy against the SARS-CoV-2 Wuhan strain. However, the emergence of highly infectious and transmissible variants of concern (VOCs) such as Omicron was associated with considerable reductions in the protective efficacy of the current vaccines. The development of next-generation vaccines that could confer broad protection against both the SARS-CoV-2 Wuhan strain and VOCs is urgently needed. A bivalent mRNA vaccine encoding the Spike proteins of both the SARS-CoV-2 Wuhan strain and the Omicron variant has been constructed and approved by the US FDA. However, mRNA vaccines are associated with instability and require an extremely low temperature (−80 °C) for storage and transportation. They also require complex synthesis and multiple chromatographic purifications. Peptide-based next-generation vaccines could be developed by relying on in silico predictions to identify peptides specifying highly conserved B, CD4+ and CD8+ T cell epitopes to elicit broad and long-lasting immune protection. These epitopes were validated in animal models and in early phase clinical trials to demonstrate immunogenicity and safety. Next-generation peptide vaccine formulations could be developed to incorporate only naked peptides, but they are costly to synthesize and production would generate extensive chemical waste. Continual production of recombinant peptides specifying immunogenic B and T cell epitopes could be achieved in hosts such as E. coli or yeast. However, recombinant protein/peptide vaccines require purification before administration. The DNA vaccine might serve as the most effective next-generation vaccine for low-income countries, since it does not require an extremely low temperature for storage or need extensive chromatographic purification. The construction of recombinant plasmids carrying genes specifying highly conserved B and T cell epitopes meant that vaccine candidates representing highly conserved antigenic regions could be rapidly developed. Poor immunogenicity of DNA vaccines could be overcome by the incorporation of chemical or molecular adjuvants and the development of nanoparticles for effective delivery.
Collapse
|
8
|
Somogyi E, Kremlitzka M, Csiszovszki Z, Molnár L, Lőrincz O, Tóth J, de Waal L, Pattijn S, Reineking W, Beineke A, Tőke ER. T cell immunity ameliorates COVID-19 disease severity and provides post-exposure prophylaxis after peptide-vaccination, in Syrian hamsters. Front Immunol 2023; 14:1111629. [PMID: 36761759 PMCID: PMC9902696 DOI: 10.3389/fimmu.2023.1111629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Background The emergence of novel SARS-CoV-2 variants that resist neutralizing antibodies drew the attention to cellular immunity and calls for the development of alternative vaccination strategies to combat the pandemic. Here, we have assessed the kinetics of T cell responses and protective efficacy against severe COVID-19 in pre- and post-exposure settings, elicited by PolyPEPI-SCoV-2, a peptide based T cell vaccine. Methods 75 Syrian hamsters were immunized subcutaneously with PolyPEPI-SCoV-2 on D0 and D14. On D42, hamsters were intranasally challenged with 102 TCID50 of the virus. To analyze immunogenicity by IFN-γ ELISPOT and antibody secretion, lymphoid tissues were collected both before (D0, D14, D28, D42) and after challenge (D44, D46, D49). To measure vaccine efficacy, lung tissue, throat swabs and nasal turbinate samples were assessed for viral load and histopathological changes. Further, body weight was monitored on D0, D28, D42 and every day after challenge. Results The vaccine induced robust activation of T cells against all SARS-CoV-2 structural proteins that were rapidly boosted after virus challenge compared to control animals (~4-fold, p<0.05). A single dose of PolyPEPI-SCoV-2 administered one day after challenge also resulted in elevated T cell response (p<0.01). The vaccination did not induce virus-specific antibodies and viral load reduction. Still, peptide vaccination significantly reduced body weight loss (p<0.001), relative lung weight (p<0.05) and lung lesions (p<0.05), in both settings. Conclusion Our study provides first proof of concept data on the contribution of T cell immunity on disease course and provide rationale for the use of T cell-based peptide vaccines against both novel SARS-CoV-2 variants and supports post-exposure prophylaxis as alternative vaccination strategy against COVID-19.
Collapse
Affiliation(s)
- Eszter Somogyi
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Mariann Kremlitzka
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Zsolt Csiszovszki
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Levente Molnár
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Orsolya Lőrincz
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - József Tóth
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| | - Leon de Waal
- Viroclinics Biosciences B.V., Viroclinics Xplore, Schaijk, Netherlands
| | - Sofie Pattijn
- ImmunXperts Société Anonyme, Q2 Solutions Company, Gosselies, Belgium
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Enikő R. Tőke
- Treos Bio Ltd, London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- PepTC Vaccines Ltd, London, United Kingdom
| |
Collapse
|
9
|
Jin X, Liu X, Shen C. A systemic review of T-cell epitopes defined from the proteome of SARS-CoV-2. Virus Res 2023; 324:199024. [PMID: 36526016 PMCID: PMC9757803 DOI: 10.1016/j.virusres.2022.199024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection remains in a global pandemic, and no eradicative therapy is currently available. Host T cells have been shown to play a crucial role in the antiviral immune protection and pathology in Coronavirus disease 2019 (COVID-19) patients; thus, identifying sufficient T-cell epitopes from the SARS-CoV-2 proteome can contribute greatly to the development of T-cell epitope vaccines and the precise evaluation of host SARS-CoV-2-specific cellular immunity. This review presents a comprehensive map of T-cell epitopes functionally validated from SARS-CoV-2 antigens, the human leukocyte antigen (HLA) supertypes to present these epitopes, and the strategies to screen and identify T-cell epitopes. To the best of our knowledge, a total of 1349 CD8+ T-cell epitopes and 790 CD4+ T-cell epitopes have been defined by functional experiments thus far, but most are presented by approximately twenty common HLA supertypes, such as HLA-A0201, A2402, B0702, DR15, DR7 and DR11 molecules, and 74-80% of the T-cell epitopes are derived from S protein and nonstructural protein. These data provide useful insight into the development of vaccines and specific T-cell detection systems. However, the currently defined T-cell epitope repertoire cannot cover the HLA polymorphism of major populations in an indicated geographic region. More research is needed to depict an overall landscape of T-cell epitopes, which covers the overall SARS-CoV-2 proteome and global patients.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China 225002; Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009.
| |
Collapse
|
10
|
Young A. T cells in SARS-CoV-2 infection and vaccination. Ther Adv Vaccines Immunother 2022; 10:25151355221115011. [PMID: 36051003 PMCID: PMC9425900 DOI: 10.1177/25151355221115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
While antibodies garner the lion’s share of attention in SARS-CoV-2 immunity, cellular immunity (T cells) may be equally, if not more important, in controlling infection. Both CD8+ and CD4+ T cells are elicited earlier and are associated with milder disease, than antibodies, and T-cell activation appears to be necessary for control of infection. Variants of concern (VOCs) such as Omicron have escaped the neutralizing antibody responses after two mRNA vaccine doses, but T-cell immunity is largely intact. The breadth and patient-specific nature of the latter offers a formidable line of defense that can limit the severity of illness, and are likely to be responsible for most of the protection from natural infection or vaccination against VOCs which have evaded the antibody response. Comprehensive searches for T-cell epitopes, T-cell activation from infection and vaccination of specific patient groups, and elicitation of cellular immunity by various alternative vaccine modalities are here reviewed. Development of vaccines that specifically target T cells is called for, to meet the needs of patient groups for whom cellular immunity is weaker, such as the elderly and the immunosuppressed. While VOCs have not yet fully escaped T-cell immunity elicited by natural infection and vaccines, some early reports of partial escape suggest that future VOCs may achieve the dreaded result, dislodging a substantial proportion of cellular immunity, enough to cause a grave public health burden. A proactive, rather than reactive, solution which identifies and targets immutable sequences in SARS-CoV-2, not just those which are conserved, may be the only recourse humankind has to disarm these future VOCs before they disarm us.
Collapse
Affiliation(s)
- Arthur Young
- InvVax, 2265 E. Foohill Blvd., Pasadena, CA 91107, USA
| |
Collapse
|
11
|
Liu P, Zhang S, Ma J, Jin D, Qin Y, Chen M. Vimentin inhibits α-tubulin acetylation via enhancing α-TAT1 degradation to suppress the replication of human parainfluenza virus type 3. PLoS Pathog 2022; 18:e1010856. [PMID: 36108090 PMCID: PMC9524669 DOI: 10.1371/journal.ppat.1010856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
We previously found that, among human parainfluenza virus type 3 (HPIV3) proteins, the interaction of nucleoprotein (N) and phosphoprotein (P) provides the minimal requirement for the formation of cytoplasmic inclusion bodies (IBs), which are sites of RNA synthesis, and that acetylated α-tubulin enhances IB fusion and viral replication. In this study, using immunoprecipitation and mass spectrometry assays, we determined that vimentin (VIM) specifically interacted with the N-P complex of HPIV3, and that the head domain of VIM was responsible for this interaction, contributing to the inhibition of IB fusion and viral replication. Furthermore, we found that VIM promoted the degradation of α-tubulin acetyltransferase 1 (α-TAT1), through its head region, thereby inhibiting the acetylation of α-tubulin, IB fusion, and viral replication. In addition, we identified a 20-amino-acid peptide derived from the head region of VIM that participated in the interaction with the N-P complex and inhibited viral replication. Our findings suggest that VIM inhibits the formation of HPIV3 IBs by downregulating α-tubulin acetylation via enhancing the degradation of α-TAT1. Our work sheds light on a new mechanism by which VIM suppresses HPIV3 replication.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Shengwei Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingyi Ma
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Dongning Jin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Luo Jia Hill, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|