1
|
Gymnastiar AA, Yuniarti A, Rahardjo SSP, Maimunah Y, Yuwanita R, Mahariawan IMD, Widyawati Y, Sholichin M, Hariati AM. The role of Pure Nano Oxygen Bubbles in the nitrogen cycle of tilapia biofloc systems. CHEMOSPHERE 2025; 384:144522. [PMID: 40513529 DOI: 10.1016/j.chemosphere.2025.144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/26/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
The nitrogen cycle is crucial in aquaculture, particularly biofloc technology (BFT), where microbial communities regulate nitrogen dynamics to maintain water quality. This study evaluates the impact of Pure Nano Oxygen Bubbles (BFT-PNOBs) on nitrogen cycling and its subsequent effects on the water quality, feed efficiency, and growth performance of Nile tilapia (Oreochromis niloticus) compared to conventional BFT. Over 56 days, the total nitrogen concentration in both systems was 118.54-119.49 mg/L. NH4+ concentrations were consistently lower in BFT-PNOBs at 0.63 mg/L than in BFT at 0.70 mg/L, suggesting a more efficient nitrification process facilitated by higher dissolved oxygen (DO) levels of 7.72 mg/L in BFT-PNOBs compared to BFT (6.67 mg/L). The selectivity of nitrogen transformation into bioavailable forms was also more efficient in BFT-PNOBs, with 58.47 % of nitrogen converted into microbial biomass and gaseous nitrogen, compared to 38.78 % in BFT. Additionally, with carbon maintained at ∼250 mg/L in both systems, the higher and more stable C/N ratio observed in BFT-PNOBs and BFT (13.99 and 10.14, respectively) reflects more efficient nitrogen removal and microbial assimilation. The superior nitrogen management in BFT-PNOBs minimized toxic nitrogen accumulation, stabilized water quality, and enhanced fish performance, resulting in a higher final body weight of 57.13 g compared to 48.08 g in BFT and a greater survival rate. These findings suggest that nano-oxygen bubble-enhanced biofloc systems optimize nitrogen cycling, supporting sustainable aquaculture by reducing environmental nitrogen waste, enhancing fish growth, and improving feed utilization.
Collapse
Affiliation(s)
- Ahmad Alfito Gymnastiar
- Master's Degree Program in Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia
| | - Ating Yuniarti
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia; Aquatic Biofloc Research Group, Brawijaya University, East Java, Indonesia.
| | - Seto Sugianto Prabowo Rahardjo
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia; Center for Shrimp Research Commodity, Brawijaya University, East Java, Indonesia.
| | - Yunita Maimunah
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia
| | - Rani Yuwanita
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia
| | - I Made Dedi Mahariawan
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia; Aquatic Biofloc Research Group, Brawijaya University, East Java, Indonesia
| | - Yuni Widyawati
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia; Aquatic Biofloc Research Group, Brawijaya University, East Java, Indonesia
| | - Moh Sholichin
- Water Resources Engineering Department, Faculty of Engineering, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia
| | - Anik Martinah Hariati
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia; Aquatic Biofloc Research Group, Brawijaya University, East Java, Indonesia
| |
Collapse
|
2
|
Wani SM, Chesti A, Rehman S, Chandra Nautiyal V, Bhat IA, Ahmad I. Repurposing and reusing aquaculture wastes through a biosecure microfloc technology. ENVIRONMENTAL RESEARCH 2025; 274:121214. [PMID: 40015429 DOI: 10.1016/j.envres.2025.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Intensive aquaculture waste management is a significant challenge in the aquaculture industry, often contributing to environmental issues. Intensive aquaculture techniques demand new strategies and alternatives aimed at achieving sustainability. Repurposing and reusing wastes through innovative technologies can mitigate their negative impact. Biofloc technology (BFT) or bio-colloidal technology is based on the concept of aquaculture waste utilization by heterotrophic microbial biomass and presents a biosecure and sustainable solution. The dynamics of BFT are shaped by ecological interactions like commensalism, competition, and predation, forming a trophic micro-network consisting of rotifers, ciliates, heterotrophic bacteria, and microalgae. Metagenomic studies showed dominance of microbial communities within the biofloc, such as Cyanobacteria, Nitrosomonas, Proteobacteria, Bacteroidetes, Pseudomonadota, Rhodobacteraceae and Bacillus species that play a crucial role in the mineralization and bioremediation of waste. These microbes also help to break down hazardous toxic compounds into non-toxic, beneficial nutrients, which are subsequently utilized as food by fish and shellfish. Also, recycling waste reduces pollution, improves water quality, and enhances the efficiency of aquaculture system. With increasing incidences of microbial diseases and growing expenses for energy, biosecurity with BFT seems, by all means a sustainable production method for aquaculture. The incorporation of biosecure biofloc technology into aquaculture practices enhances environmental sustainability while optimizing resource use, creating more eco-friendly and cost-effective systems. This review highlights key aspects such as the microbial dynamics, role of metagenomics in identifying the bacterial communities, bioremediation of aquaculture waste, biosecurity concerns, and the biocontrol of pathogenic microbes across various biofloc systems.
Collapse
Affiliation(s)
- Sayima Majeed Wani
- Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Rangil, Ganderbal, 190006, India
| | - Anayitullah Chesti
- Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Rangil, Ganderbal, 190006, India
| | - Saima Rehman
- ICAR - Central Marine Fisheries Research Institute, Kochi, 682018, India
| | | | - Irfan Ahmad Bhat
- Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Rangil, Ganderbal, 190006, India
| | - Irshad Ahmad
- Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Rangil, Ganderbal, 190006, India.
| |
Collapse
|
3
|
Yang J, Choi H, Park JS, Cha Y, Hwang JA, Oh SY. Biofloc technology significantly reshapes water microbiome and improves survival rates in Japanese eel ( Anguilla japonica). Microbiol Spectr 2025; 13:e0220624. [PMID: 39812557 PMCID: PMC11792490 DOI: 10.1128/spectrum.02206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange. Instead, it leverages its inherent microbiome for nutrient recycling, which can help reduce associated costs. The Japanese eel (Anguilla japonica), consumed as a luxury food item in China, Japan, and South Korea, has seen little research related to BFT. In this study, we observed the survival and growth rates of eels treated with BFT over 8 weeks and monitored changes in the gut and water microbiome using 16S rRNA amplicon sequencing (metabarcoding) and quantitative PCR. Our research demonstrated that BFT treatment was more advantageous for eel growth compared with FTS in terms of eel survival rate, feed intake amount, and growth rate. Both treatments did not result in water quality conditions detrimental to the growth of eels. Alpha diversity was higher in BFT water microbiome than in FTS, but no differences were observed in the guts of eels between the two treatments. While community structures of water microbiome (taxonomic composition) differed between BFT and FTS, gut microbiome did not. To identify the operational taxonomic units (OTUs) that directly influence the feed consumption rate of eels, closely linked to their growth rate, we first determined the differentially abundant residents and then highlighted the most informative OTUs. In summary, our analysis identified microbial residents potentially associated with the higher growth rates observed in BFT-treated eels, highlighting the need for further functional studies. IMPORTANCE This study is significant as it addresses a critical gap in the application of Biofloc Technology (BFT) to Japanese eel (Anguilla japonica) aquaculture, a high-value species in East Asia. BFT's potential to reduce water consumption and enhance growth through the use of beneficial microorganisms presents a sustainable solution to the challenges of nitrogenous waste management in global aquaculture. Our research provides the first comprehensive analysis of how BFT influences both the growth and microbiome composition of Japanese eels compared with traditional flow-through systems. By identifying specific microbial residents potentially linked to improved feed consumption and growth, this study opens new avenues for optimizing BFT in eel farming. The findings contribute to the broader understanding of microbial roles in aquaculture, highlighting the potential for BFT to support more sustainable and productive aquaculture practices.
Collapse
Affiliation(s)
- Jiho Yang
- Gyeongnam Bio and Anti-aging Core Facility, Changwon National University, Changwon, South Korea
| | - Hyunjun Choi
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
- Advanced Aquaculture Research Center, National Institute of Fisheries Science, Changwon, South Korea
| | - Jun Seong Park
- Advanced Aquaculture Research Center, National Institute of Fisheries Science, Changwon, South Korea
| | - Yehyeon Cha
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Ju-Ae Hwang
- Advanced Aquaculture Research Center, National Institute of Fisheries Science, Changwon, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| |
Collapse
|
4
|
Wandana S, Adlin N, Satanwat P, Pungrasmi W, Kotcharoen W, Takeuchi Y, Watari T, Hatamoto M, Yamaguchi T. Application of Biofloc-Down flow hanging sponge system to remove nitrogen components in recirculating zero water exchange aquaculture system. BIORESOURCE TECHNOLOGY 2024; 413:131496. [PMID: 39299346 DOI: 10.1016/j.biortech.2024.131496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
This study presents a novel approach to sustainable aquaculture by integrating biofloc technology (BFT) with a compact down-flow hanging sponge (DHS) reactor. The integrated BFT-DHS system effectively removed nitrogen compounds while maintaining ammonia-nitrogen (NH4+-N) concentrations below 1 mg-N L-1 without water exchange. Application of this system in a tank bred with juvenile Oreochromis niloticus showed a high NH4+-N removal rate of up to 97 % and nitrite (NO2- -N) concentrations were maintained at 0.1 ± 0.1 mg-N L-1. Microbial analysis revealed Gordonia as the predominant genus in the biofloc contributing to heterotrophic nitrification, while the Peptostreptococcaceae family dominated the DHS reactor. Heterotrophic nitrification seemed to be the primary process for enhanced nitrogen removal. Pathogenic bacteria, Vibrio sp. was absent throughout the study. This study highlights the potential integration of BFT and DHS system for sustainable aquaculture practice with effective nitrogen removal.
Collapse
Affiliation(s)
- Samadhi Wandana
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Nur Adlin
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Penpicha Satanwat
- Department of Civil Engineering, Thammasat School of Engineering, Thammasat University, Pathumthani 12120, Thailand.
| | - Wiboonluk Pungrasmi
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Kanazawa University, Japan.
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, 940-2188, Japan.
| |
Collapse
|
5
|
Rajeev M, Jung I, Kang I, Cho JC. Genome-centric metagenomics provides insights into the core microbial community and functional profiles of biofloc aquaculture. mSystems 2024; 9:e0078224. [PMID: 39315779 PMCID: PMC11494986 DOI: 10.1128/msystems.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioflocs are microbial aggregates that play a pivotal role in shaping animal health, gut microbiota, and water quality in biofloc technology (BFT)-based aquaculture systems. Despite the worldwide application of BFT in aquaculture industries, our comprehension of the community composition and functional potential of the floc-associated microbiota (FAB community; ≥3 µm size fractions) remains rudimentary. Here, we utilized genome-centric metagenomic approach to investigate the FAB community in shrimp aquaculture systems, resulting in the reconstruction of 520 metagenome-assembled genomes (MAGs) spanning both bacterial and archaeal domains. Taxonomic analysis identified Pseudomonadota and Bacteroidota as core community members, with approximately 93% of recovered MAGs unclassified at the species level, indicating a large uncharacterized phylogenetic diversity hidden in the FAB community. Functional annotation of these MAGs unveiled their complex carbohydrate-degrading potential and involvement in carbon, nitrogen, and sulfur metabolisms. Specifically, genomic evidence supported ammonium assimilation, autotrophic nitrification, denitrification, dissimilatory nitrate reduction to ammonia, thiosulfate oxidation, and sulfide oxidation pathways, suggesting the FAB community's versatility for both aerobic and anaerobic metabolisms. Conversely, genes associated with heterotrophic nitrification, anaerobic ammonium oxidation, assimilatory nitrate reduction, and sulfate reduction were undetected. Members of Rhodobacteraceae emerged as the most abundant and metabolically versatile taxa in this intriguing community. Our MAGs compendium is expected to expand the available genome collection from such underexplored aquaculture environments. By elucidating the microbial community structure and metabolic capabilities, this study provides valuable insights into the key biogeochemical processes occurring in biofloc aquacultures and the major microbial contributors driving these processes. IMPORTANCE Biofloc technology has emerged as a sustainable aquaculture approach, utilizing microbial aggregates (bioflocs) to improve water quality and animal health. However, the specific microbial taxa within this intriguing community responsible for these benefits are largely unknown. Compounding this challenge, many bacterial taxa resist laboratory cultivation, hindering taxonomic and genomic analyses. To address these gaps, we employed metagenomic binning approach to recover over 500 microbial genomes from floc-associated microbiota of biofloc aquaculture systems operating in South Korea and China. Through taxonomic and genomic analyses, we deciphered the functional gene content of diverse microbial taxa, shedding light on their potential roles in key biogeochemical processes like nitrogen and sulfur metabolisms. Notably, our findings underscore the taxa-specific contributions of microbes in aquaculture environments, particularly in complex carbon degradation and the removal of toxic substances like ammonia, nitrate, and sulfide.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Institute for Specialized Teaching and Research, Inha University, Incheon, South Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Ilnam Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| |
Collapse
|
6
|
Ghosh AK, Hasanuzzaman AFM, Sarower MG, Islam MR, Huq KA. Unveiling the biofloc culture potential: Harnessing immune functions for resilience of shrimp and resistance against AHPND -causing Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109710. [PMID: 38901683 DOI: 10.1016/j.fsi.2024.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
In shrimp aquaculture, disease mitigation may be accomplished by reducing the virulence of the pathogen or by boosting the shrimp's immunity. Biofloc technology is an innovative system that improves the health and resistance of shrimp to microbial infections while providing a viable option for maintaining the quality of culture water through efficient nutrient recycling. This review aimed at demonstrating the efficacy of the biofloc system in boosting the immune responses and protective processes of shrimp against Vibrio parahaemolyticus infection, which is known to cause Acute Hepatopancreatic Necrosis Disease (AHPND). Numerous studies have revealed that the biofloc system promotes the immunological capability of shrimp by raising multiple immune -related genes e.g. prophenoloxidase, serine proteinase gene, ras-related nuclear gene and penaeidinexpression and cellular and humoral responses such as hyperaemia, prophenoloxidase activity, superoxide dismutase activity, phagocytic activity; the protection and survival of shrimp when faced with a challenge from the V. parahaemolyticus strain have been enhanced. Furthermore, the use of the biofloc system improves water quality parameters and potentially bolstering their immune and overall health to effectively resist diseases; hence, promotes the growth of shrimp. The present review suggests that biofloc can serve as an effective therapy for both preventing and supporting the management of probable AHPND infection in shrimp culture. This approach exhibits potential for the progress of sustainable shrimp farming, higher productivity, and improved shrimp health.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | | | - Md Golam Sarower
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Rashedul Islam
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Khandaker Anisul Huq
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
7
|
Raza B, Zheng Z, Yang W. A Review on Biofloc System Technology, History, Types, and Future Economical Perceptions in Aquaculture. Animals (Basel) 2024; 14:1489. [PMID: 38791706 PMCID: PMC11117240 DOI: 10.3390/ani14101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Given the scarcity of water and land resources, coupled with the competitive nature of aquaculture, the long-term viability of this industry will depend on strategies for vertical development. This involves enhancing production environments, increasing productivity, and advancing aquaculture technologies. The use of biofloc technology offers a potential solution to mitigate the adverse environmental impacts and the heavy reliance on fishmeal in the aquaculture sector. This method is designed to effectively assimilate inorganic nitrogen found in aquaculture wastewater, thereby enhancing water quality. Additionally, this process produces microbial protein, which can serve as a viable supplemental feed for aquatic animals. Furthermore, this technique has the potential to reduce the feed conversion ratio, thereby lowering overall production costs. This article provides an overview of the evolving field of biofloc system technology within aquaculture. In this study, we will examine the historical development and various types of biofloc systems, as well as the factors that influence their effectiveness. Finally, we will explore the economic potential of implementing biofloc systems in aquaculture.
Collapse
Affiliation(s)
- Bilal Raza
- School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
8
|
Raza B, Zheng Z, Zhu J, Yang W. A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System. Microorganisms 2024; 12:1013. [PMID: 38792842 PMCID: PMC11123971 DOI: 10.3390/microorganisms12051013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In the modern era of Aquaculture, biofloc technology (BFT) systems have attained crucial attention. This technology is used to reduce water renewal with the removal of nitrogen and to provide additional feed. In BFT, microorganisms play a crucial role due to their complex metabolic properties. Pathogens can be controlled through multiple mechanisms using probiotics, which can promote host development and enhance the quality of the culture environment. During culturing in a biofloc technology system, the supplementation of microalgae and its accompanying bacteria plays a beneficial role in reducing nitrogenous compounds. This enhances water quality and creates favorable environmental conditions for specific bacterial groups, while simultaneously reducing the dependency on carbon sources with higher content. The fluctuations in the bacterial communities of the intestine are closely associated with the severity of diseases related to shrimp and are used to evaluate the health status of shrimp. Overall, we will review the microbes associated with shrimp culture in BFT and their effects on shrimp growth. We will also examine the microbial impacts on the growth performance of L. vannamei in BFT, as well as the close relationship between probiotics and the intestinal microbes of L. vannamei.
Collapse
Affiliation(s)
| | | | | | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo 315832, China; (B.R.); (Z.Z.); (J.Z.)
| |
Collapse
|
9
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
10
|
Wu J, Xu W, Xu Y, Su H, Hu X, Cao Y, Zhang J, Wen G. Impact of Organic Carbons Addition on the Enrichment Culture of Nitrifying Biofloc from Aquaculture Water: Process, Efficiency, and Microbial Community. Microorganisms 2024; 12:703. [PMID: 38674647 PMCID: PMC11052406 DOI: 10.3390/microorganisms12040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we developed a rapid and effective method for enriching the culture of nitrifying bioflocs (NBF) from aquacultural brackish water. The self-designed mixotrophic mediums with a single or mixed addition of sodium acetate, sodium citrate, and sucrose were used to investigate the enrichment process and nitrification efficiency of NBF in small-scale reactors. The results showed that NBF with an MLVSSs from 1170.4 mg L-1 to 2588.0 mg L-1 were successfully enriched in a period of less than 16 days. The citrate group performed the fastest enrichment time of 10 days, while the sucrose group had the highest biomass of 2588.0 ± 384.7 mg L-1. In situ testing showed that the highest nitrification efficiency was achieved in the citrate group, with an ammonia oxidation rate of 1.45 ± 0.34 mg N L-1 h-1, a net nitrification rate of 2.02 ± 0.20 mg N L-1 h-1, and a specific nitrification rate of 0.72 ± 0.14 mg N g-1 h-1. Metagenomic sequencing revealed that Nitrosomonas (0.0~1.0%) and Nitrobacter (10.1~26.5%) were dominant genera for AOB and NOB, respectively, both of which had the highest relative abundances in the citrate group. Linear regression analysis further demonstrated significantly positive linear relations between nitrification efficiencies and nitrifying bacterial genera and gene abundance in NBF. The results of this study provide an efficient enrichment culture method of NBF for the operation of biofloc technology aquaculture systems, which will further promote its wide application in modern intensive aquaculture.
Collapse
Affiliation(s)
- Jiaqi Wu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
| | - Wujie Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
| | - Haochang Su
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yucheng Cao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jianshe Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
| | - Guoliang Wen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| |
Collapse
|
11
|
Akange ET, Aende AA, Rastegari H, Odeyemi OA, Kasan NA. Swinging between the beneficial and harmful microbial community in biofloc technology: A paradox. Heliyon 2024; 10:e25228. [PMID: 38352782 PMCID: PMC10861956 DOI: 10.1016/j.heliyon.2024.e25228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Biofloc Technology (BFT) is proven to be the fulcrum of sustainable recirculating aquaculture system especially under zero water discharge condition. The efficiency of BFT system is reinforced by an unswerving microbial community in the system. Several researchers have made copious reports on the microorganisms in BFT and identified heterotrophic bacteria predominant in the microbial composition. A summary of these researches considers these microorganisms playing the role of chemo-photosynthetic autotrophs, organic detoxifiers, probiotic, decomposers/bioflocculants, bio-leachers and pathogens. Although these functional roles are well identified, the reports have failed to sufficiently illustrate the borderline at which these microbial communities fail to serve their beneficial roles in BFT system. This review paper firstly presents a snapshot of some indispensable water quality conditions and zootechnical variables aided by the microbial community in floc as well as the amphibolic process that synthesizes nutrient from the organic deposit in BFT. Furthermore, information on the microbial community in BFT is evaluated to have Bacillus sp., Lecane sp. and Pseudomonas sp. serving all-encompassing role in BFT while Vibrio sp. and Enterobacter sp. are pathogenic under unsuitable water quality conditions. Functional characterisation of the commonly reported microorganisms in BFT categorised 21.95 % as most critical, whose abundance indicates an efficient BFT.
Collapse
Affiliation(s)
- Edward Terhemen Akange
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University (formerly, Federal University of Agriculture), Makurdi, P.M.B.2373, Benue State, Nigeria
| | - Athanasius Aondohemen Aende
- Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University (formerly, Federal University of Agriculture), Makurdi, P.M.B.2373, Benue State, Nigeria
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Olumide A. Odeyemi
- Office of Research Services, Research Division, University of Tasmania, Launceston, Australia
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
13
|
Shi Y, Wang X, Cai H, Ke J, Zhu J, Lu K, Zheng Z, Yang W. The Assembly Process of Free-Living and Particle-Attached Bacterial Communities in Shrimp-Rearing Waters: The Overwhelming Influence of Nutrient Factors Relative to Microalgal Inoculation. Animals (Basel) 2023; 13:3484. [PMID: 38003102 PMCID: PMC10668652 DOI: 10.3390/ani13223484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The ecological functions of bacterial communities vary between particle-attached (PA) lifestyles and free-living (FL) lifestyles, and separately exploring their community assembly helps to elucidate the microecological mechanisms of shrimp rearing. Microalgal inoculation and nutrient enrichment during shrimp rearing are two important driving factors that affect rearing-water bacterial communities, but their relative contributions to the bacterial community assembly have not been evaluated. Here, we inoculated two microalgae, Nannochloropsis oculata and Thalassiosira weissflogii, into shrimp-rearing waters to investigate the distinct effects of various environmental factors on PA and FL bacterial communities. Our study showed that the composition and representative bacteria of different microalgal treatments were significantly different between the PA and FL bacterial communities. Regression analyses and Mantel tests revealed that nutrients were vital factors that constrained the diversity, structure, and co-occurrence patterns of both the PA and FL bacterial communities. Partial least squares path modeling (PLS-PM) analysis indicated that microalgae could directly or indirectly affect the PA bacterial community through nutrient interactions. Moreover, a significant interaction was detected between PA and FL bacterial communities. Our study reveals the unequal effects of microalgae and nutrients on bacterial community assembly and helps explore microbial community assembly in shrimp-rearing ecosystems.
Collapse
Affiliation(s)
- Yikai Shi
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Xuruo Wang
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| |
Collapse
|
14
|
Rajeev M, Jung I, Lim Y, Kim S, Kang I, Cho JC. Metagenome sequencing and recovery of 444 metagenome-assembled genomes from the biofloc aquaculture system. Sci Data 2023; 10:707. [PMID: 37848477 PMCID: PMC10582022 DOI: 10.1038/s41597-023-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Biofloc technology is increasingly recognised as a sustainable aquaculture method. In this technique, bioflocs are generated as microbial aggregates that play pivotal roles in assimilating toxic nitrogenous substances, thereby ensuring high water quality. Despite the crucial roles of the floc-associated bacterial (FAB) community in pathogen control and animal health, earlier microbiota studies have primarily relied on the metataxonomic approaches. Here, we employed shotgun sequencing on eight biofloc metagenomes from a commercial aquaculture system. This resulted in the generation of 106.6 Gbp, and the reconstruction of 444 metagenome-assembled genomes (MAGs). Among the recovered MAGs, 230 were high-quality (≥90% completeness, ≤5% contamination), and 214 were medium-quality (≥50% completeness, ≤10% contamination). Phylogenetic analysis unveiled Rhodobacteraceae as dominant members of the FAB community. The reported metagenomes and MAGs are crucial for elucidating the roles of diverse microorganisms and their functional genes in key processes such as nitrification, denitrification, and remineralization. This study will contribute to scientific understanding of phylogenetic diversity and metabolic capabilities of microbial taxa in aquaculture environments.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea
- Institute for Specialized Teaching and Research, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Yeonjung Lim
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea.
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea.
| |
Collapse
|
15
|
Vinatea L, Carbó R, Andree KB, Gisbert E, Estévez A. Rearing European Eel ( Anguilla anguilla) Elvers in a Biofloc System. Animals (Basel) 2023; 13:3234. [PMID: 37893957 PMCID: PMC10603747 DOI: 10.3390/ani13203234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
European eel (Anguilla anguilla) elvers (initial body weight (BW) = 3 g) were raised in triplicate for 60 days in a biofloc system (BFT) at 21 °C. Data from the current first study evaluating this farming technology indicated that European eel elvers adapted well to BFT systems as data on growth performance (specific growth rate = 1.48% ± 0.13 BW/day and FCR = 1.05 ± 0.09) indicated, with production costs using BFT being lower than conventional RAS units. The most critical issues associated with this aquaculture system were the maintenance of the biofloc in tanks by the regular addition of refined sugar (46% C) to keep a relationship for C:N of 20:1, and the prevention of emergence of opportunistic pathogens like the monogenean Pseudodactylogyrus sp. The overall results of this study in terms of elvers' performance and quality and the composition of the biofloc material and its microbial composition indicated that BFT, which is considered to be one of the most cost-effective, sustainable, and environmentally friendly farming systems due to its zero water exchange and improvement of feed conversion ratio by the dietary contribution of bioflocs, may be satisfactorily used for farming European eels elvers at a density of 2 kg/m3. However, further studies are needed to test this technology with older eel stages.
Collapse
Affiliation(s)
- Luis Vinatea
- Departamento de Acuicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88061-600, SC, Brazil
| | - Ricard Carbó
- Aquaculture Program, Centre de la Ràpita, Institut de Recerca i Tecnología Agroalimentàries (IRTA), Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Rapita, Spain; (R.C.); (K.B.A.); (A.E.)
| | - Karl B. Andree
- Aquaculture Program, Centre de la Ràpita, Institut de Recerca i Tecnología Agroalimentàries (IRTA), Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Rapita, Spain; (R.C.); (K.B.A.); (A.E.)
| | - Enric Gisbert
- Aquaculture Program, Centre de la Ràpita, Institut de Recerca i Tecnología Agroalimentàries (IRTA), Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Rapita, Spain; (R.C.); (K.B.A.); (A.E.)
| | - Alicia Estévez
- Aquaculture Program, Centre de la Ràpita, Institut de Recerca i Tecnología Agroalimentàries (IRTA), Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Rapita, Spain; (R.C.); (K.B.A.); (A.E.)
| |
Collapse
|
16
|
Yu YB, Lee JH, Choi JH, Choi YJ, Jo AH, Choi CY, Kang JC, Kim JH. The application and future of biofloc technology (BFT) in aquaculture industry: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118237. [PMID: 37267764 DOI: 10.1016/j.jenvman.2023.118237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
This review describes the applicability of biofloc technology (BFT) to future aquaculture technologies. BFT is considered an innovative alternative for solving the problems of traditional aquaculture (for example, environmental pollution, high maintenance costs, and low productivity). Extensive research is being conducted to apply BFT to breed and raise many aquatic animal species. In BFT, maintaining an appropriate C:N ratio by adding a carbon source promotes the growth of microorganisms in water and maintains the aquaculture water quality through microbial processes such as nitrification. For the efficient use and sustainability of BFT, various factors such as total suspended solids, water turbidity, temperature, dissolved oxygen, pH, and salinity, stocking density, and light should be considered. The application of the transformative fourth industrial revolution technologies, Information and Communications Technology (ICT) and Internet of Things (IoT), to aquaculture can reduce the risk factors and manual interventions in aquaculture through automation and intelligence. The combination of ICT/IoT with BFT can enable real-time monitoring of the necessary elements of BFT farming using various sensors, which is expected to increase productivity by ensuring the growth and health of the organisms being reared.
Collapse
Affiliation(s)
- Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Ju-Hyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Young Jae Choi
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan, South Korea
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, South Korea.
| |
Collapse
|
17
|
Deka Boruah HP, Chauhan PS, Acharya C. Editorial: Trends of microbial technologies in rehabilitation of contaminated environments. Front Microbiol 2023; 14:1268002. [PMID: 37675427 PMCID: PMC10478085 DOI: 10.3389/fmicb.2023.1268002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
18
|
Kumar V, Swain HS, Vuong P, Roy S, Upadhyay A, Malick RC, Bisai K, Kaur P, Das BK. Microbial inoculums improve growth and health of Heteropneustes fossilis via biofloc-driven aquaculture. Microb Cell Fact 2023; 22:106. [PMID: 37268947 DOI: 10.1186/s12934-023-02107-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/26/2023] [Indexed: 06/04/2023] Open
Abstract
Biofloc technology aims to maximize fish farming productivity by effectively breaking down ammonia and nitrite, promoting healthy flocculation, and enhancing the growth and immunity of cultured animals. However, a major limitation in this field is the suitable starter microbial culture and narrow number of fish species that have been tested with the biofloc system. Here, we investigated various microbial inoculum containing beneficial microbes with probiotics, immunostimulatory and flocs development and bioremediation properties would lead to the development of ideal biofloc development. Three treatment groups with different microbial combinations, viz., group 1 [Bacillus subtilis (AN1) + Pseudomonas putida (PB3) + Saccharomyces cerevisiae (ATCC-2601)], group 2 [B. subtilis (AN2) + P. fluorescens (PC3) + S. cerevisiae (ATCC-2601)] and group 3 [B. subtilis (AN3) + P. aeruginosa (PA2) + S. cerevisiae (ATCC-2601)] were used and compared with the positive control (pond water without microbial inoculums) and negative control (clear water: without microbial inoculums and carbon sources) on biofloc development and its characteristic features to improve the water quality and growth of fish. We demonstrated that microbial inoculums, especially group 2, significantly improve the water quality and microbiota of flocs and gut of the test animal, Heteropneustes fossilis. The study further demonstrates that biofloc system supplemented with microbial inoculums positively regulates gut histomorphology and growth performance, as evidenced by improved villous morphology, amylase, protease and lipase activity, weight gain, FCR, T3, T4 and IGF1 levels. The inoculums induced an antioxidative response marked by significantly higher values of catalase (CAT) and superoxide dismutase (SOD) activity. Furthermore, the supplementation of microbial inoculums enhances both specific and non-specific immune responses and significantly elevated levels of immune genes (transferrin, interleukin-1β and C3), and IgM was recorded. This study provides a proof-of-concept approach for assessing microbial inoculums on fish species that can be further utilized to develop biofloc technology for use in sustainable aquaculture.
Collapse
Affiliation(s)
- Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Himanshu Sekhar Swain
- Fisheries Resource Assessment and Informatics (FRAI) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, 751002, India
| | - Paton Vuong
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Suvra Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Aurobinda Upadhyay
- ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia.
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India.
| |
Collapse
|
19
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
20
|
Kumar V, Das BK, Swain HS, Chowdhury H, Roy S, Bera AK, Das R, Parida SN, Dhar S, Jana AK, Behera BK. Outbreak of Ichthyophthirius multifiliis associated with Aeromonas hydrophila in Pangasianodon hypophthalmus: The role of turmeric oil in enhancing immunity and inducing resistance against co-infection. Front Immunol 2022; 13:956478. [PMID: 36119096 PMCID: PMC9478419 DOI: 10.3389/fimmu.2022.956478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ichthyophthirius multifiliis, a ciliated parasite causing ichthyophthiriasis (white spot disease) in freshwater fishes, results in significant economic loss to the aquaculture sector. One of the important predisposing factors for ichthyophthiriasis is low water temperature (i.e., below 20°C), which affects the health and makes freshwater fishes more susceptible to parasitic infections. During ichthyophthiriasis, fishes are stressed and acute immune reactions are compromised, which enables the aquatic bacterial pathogens to simultaneously infect the host and increase the severity of disease. In the present work, we aimed to understand the parasite–bacteria co-infection mechanism in fish. Later, Curcuma longa (turmeric) essential oil was used as a promising management strategy to improve immunity and control co-infections in fish. A natural outbreak of I. multifiliis was reported (validated by 16S rRNA PCR and sequencing method) in Pangasianodon hypophthalmus from a culture facility of ICAR-CIFRI, India. The fish showed clinical signs including hemorrhage, ulcer, discoloration, and redness in the body surface. Further microbiological analysis revealed that Aeromonas hydrophila was associated (validated by 16S rRNA PCR and sequencing method) with the infection and mortality of P. hypophthalmus, confirmed by hemolysin and survival assay. This created a scenario of co-infections, where both infectious agents are active together, causing ichthyophthiriasis and motile Aeromonas septicemia (MAS) in P. hypophthalmus. Interestingly, turmeric oil supplementation induced protective immunity in P. hypophthalmus against the co-infection condition. The study showed that P. hypophthalmus fingerlings supplemented with turmeric oil, at an optimum concentration (10 ppm), exhibited significantly increased survival against co-infection. The optimum concentration induced anti-stress and antioxidative response in fingerlings, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) in treated animals as compared with the controls. Furthermore, the study indicated that supplementation of turmeric oil increases both non-specific and specific immune response, and significantly higher values of immune genes (interleukin-1β, transferrin, and C3), HSP70, HSP90, and IgM were observed in P. hypophthalmus treatment groups. Our findings suggest that C. longa (turmeric) oil modulates stress, antioxidant, and immunological responses, probably contributing to enhanced protection in P. hypophthalmus. Hence, the application of turmeric oil treatment in aquaculture might become a management strategy to control co-infections in fishes. However, this hypothesis needs further validation.
Collapse
Affiliation(s)
- V. Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Das
- Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| | - H. S. Swain
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - H. Chowdhury
- Reservoir and Wetland Fisheries (RWF) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Bera
- Fisheries Resource Assessment and Informatics (FRAI) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - R. Das
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. N. Parida
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Dhar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Jana
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| |
Collapse
|
21
|
Xu W, Wen G, Su H, Xu Y, Hu X, Cao Y. Effect of Input C/N Ratio on Bacterial Community of Water Biofloc and Shrimp Gut in a Commercial Zero-Exchange System with Intensive Production of Penaeus vannamei. Microorganisms 2022; 10:microorganisms10051060. [PMID: 35630503 PMCID: PMC9146922 DOI: 10.3390/microorganisms10051060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Although increasing attention has been attracted to the study and application of biofloc technology (BFT) in aquaculture, few details have been reported about the bacterial community of biofloc and its manipulation strategy for commercial shrimp production. An 8-week trial was conducted to investigate the effects of three input C/N ratios (8:1, 12:1 and 16:1) on the bacterial community of water biofloc and shrimp gut in a commercial BFT tank system with intensive aquaculture of P. vannamei. Each C/N ratio group had three randomly assigned replicate tanks (culture water volume of 30 m3), and each tank was stocked with juvenile shrimp at a density of 300 shrimp m−3. The tank systems were operated with zero-water exchange, pH maintenance and biofloc control. During the trial, the microbial biomass and bacterial density of water biofloc showed similar variation trends, with no significant difference under respective biofloc control measures for the three C/N ratio groups. Significant changes were found in the alpha diversity, composition and relative abundance of bacterial communities across the stages of the trial, and they showed differences in water biofloc and shrimp gut among the three C/N ratio groups. Meanwhile, high similarity could be found in the composition of the bacterial community between water biofloc and shrimp gut. Additionally, nitrogen dynamics in culture water showed some differences while shrimp performance showed no significant difference among the three C/N ratio groups. Together, these results confirm that the manipulation of input C/N ratio could affect the bacterial community of both water biofloc and shrimp gut in the environment of a commercial BFT system with intensive production of P. vannamei. Moreover, there should be different operations for the nitrogen dynamics and biofloc management during shrimp production process under different C/N ratios.
Collapse
Affiliation(s)
- Wujie Xu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Guoliang Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Haochang Su
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Yu Xu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Xiaojuan Hu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Yucheng Cao
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.X.); (H.S.); (Y.X.); (X.H.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Correspondence: ; Tel.: +86-20-34063050
| |
Collapse
|