1
|
Jönsson M, Sigrist R, Gren T, Semenov Petrov M, Marcussen NEJ, Svetlova A, Charusanti P, Gockel P, Palsson BO, Yang L, Özdemir E. Machine learning uncovers the transcriptional regulatory network for the production host Streptomyces albidoflavus. Cell Rep 2025; 44:115392. [PMID: 40057950 DOI: 10.1016/j.celrep.2025.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Streptomyces albidoflavus is a widely used strain for natural product discovery and production through heterologous biosynthetic gene clusters (BGCs). However, the transcriptional regulatory network (TRN) and its impact on secondary metabolism remain poorly understood. Here, we characterize the TRN using independent component analysis on 218 RNA sequencing (RNA-seq) transcriptomes across 88 unique growth conditions. We identify 78 independently modulated sets of genes (iModulons) that quantitatively describe the TRN across diverse conditions. Our analyses reveal (1) TRN adaptation to different growth conditions, (2) conserved and unique characteristics of the TRN across diverse lineages, (3) transcriptional activation of several endogenous BGCs, including surugamide, minimycin, and paulomycin, and (4) inferred functions of 40% of uncharacterized genes in the S. albidoflavus genome. These findings provide a comprehensive and quantitative understanding of the S. albidoflavus TRN, offering a knowledge base for further exploration and experimental validation.
Collapse
Affiliation(s)
- Mathias Jönsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Renata Sigrist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mykhaylo Semenov Petrov
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Nils Emil Junge Marcussen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Anna Svetlova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Peter Gockel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lei Yang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| | - Emre Özdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Recalde A, Wagner A, Sivabalasarma S, Yurmashava A, Fehr NP, Thurm R, Le TN, Köebler C, Wassmer B, Albers SV, van Wolferen M. New components of the community-based DNA-repair mechanism in Sulfolobales. MICROLIFE 2025; 6:uqaf002. [PMID: 39949789 PMCID: PMC11823120 DOI: 10.1093/femsml/uqaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
After exposure to ultraviolet (UV) light, Sulfolobus acidocaldarius cells aggregate in a species-specific manner to exchange DNA and repair double-strand breaks via homologous recombination. The formation of cell-cell interactions is mediated by Ups pili. DNA exchange subsequently occurs through the Crenarchaeal system for exchange of DNA (Ced), which imports DNA. To identify novel players in these processes, we investigated that several genes upregulated after UV exposure, by creating in-frame deletion mutants and performing cell aggregation and DNA exchange assays. This led to the identification of two novel components involved in the Ups and Ced systems: UpsC, a minor pilin of the Ups pili, and CedD, a VirD4-like ATPase essential for DNA import. Altogether, these findings provide new insights into the DNA damage response mechanisms in Sulfolobales.
Collapse
Affiliation(s)
- Alejandra Recalde
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Anastasiya Yurmashava
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Nayeli Phycilia Fehr
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Rebecca Thurm
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Thuong Ngoc Le
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Christin Köebler
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Bianca Wassmer
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II—Microbiology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Catoiu EA, Krishnan J, Li G, Lou XA, Rychel K, Yuan Y, Bajpe H, Patel A, Choe D, Shin J, Burrows J, Phaneuf P, Zielinski DC, Palsson BO. iModulonDB 2.0: dynamic tools to facilitate knowledge-mining and user-enabled analyses of curated transcriptomic datasets. Nucleic Acids Res 2025; 53:D99-D106. [PMID: 39494532 PMCID: PMC11701608 DOI: 10.1093/nar/gkae1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
iModulons-sets of co-expressed genes identified through independent component analysis (ICA) of high-quality transcriptomic datasets-provide an unbiased, modular view of an organism's transcriptional regulatory network. Established in 2020, iModulonDB (iModulonDB.org) serves as a centralized repository of curated iModulon sets, enabling users to explore iModulons and download the associated transcriptomic data. This update reflects a significant expansion of the database-19 new ICA decompositions (+633%) spanning 8 925 expression profiles (+1370%), 503 studies (+2290%) and 12 additional organisms (+400%)-and introduces new features to help scientists decipher the mechanisms governing prokaryotic transcriptional regulation. To facilitate comprehension of the underlying expression profiles, the updated user-interface displays essential information about each data-generating study (e.g. the experimental conditions and publication abstract). Dashboards now include condition-specific coloring and highlight data generated from genetically perturbed strains, enabling users to rapidly interpret disruptions in transcriptional regulation. New interactive graphs rapidly convey omics-derived indicators (e.g. the explained variance of ICA decompositions, genetic overlap between iModulons and regulons). Direct links to operon diagrams (BioCyc) and protein-protein interaction networks (STRING) provide users with seamless access to external resources for further assessment of iModulons. Lastly, a new suite of search-driven and species-wide analysis tools promotes user-engagement with iModulons, reinforcing iModulonDB's role as a dynamic, interactive knowledgebase of prokaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Edward A Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Jayanth Krishnan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Gaoyuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Xuwen A Lou
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Yuan Yuan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Heera Bajpe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Donghui Choe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Jongoh Shin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Joshua Burrows
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation (NNF) Center for Biosustainability, The Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92101, USA
- The Novo Nordisk Foundation (NNF) Center for Biosustainability, The Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
4
|
Zhang Y, Zhao J, Sun X, Zheng Y, Chen T, Wang Z. Leveraging independent component analysis to unravel transcriptional regulatory networks: A critical review and future directions. Biotechnol Adv 2025; 78:108479. [PMID: 39577573 DOI: 10.1016/j.biotechadv.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Transcriptional regulatory networks (TRNs) play a crucial role in exploring microbial life activities and complex regulatory mechanisms. The comprehensive reconstruction of TRNs requires the integration of large-scale experimental data, which poses significant challenges due to the complexity of regulatory relationships. The application of machine learning tools, such as clustering analysis, has been employed to investigate TRNs, but these methods have limitations in capturing both global and local co-expression effects. In contrast, Independent Component Analysis (ICA) has emerged as a powerful analysis algorithm for modularizing independently regulated gene sets in TRNs, allowing it to account for both global and local co-expression effects. In this review, we comprehensively summarize the application of ICA in unraveling TRNs and highlight the research progress in three key aspects: (1) extending TRNs with iModulon analysis; (2) elucidating the regulatory mechanisms triggered by environmental perturbation; and (3) exploring the mechanisms of transcriptional regulation triggered by changes in microbial physiological state. At the end of this review, we also address the challenges facing ICA in TRN analysis and outline future research directions to promote the advancement of ICA-based transcriptomics analysis in biotechnology and related fields.
Collapse
Affiliation(s)
- Yuhan Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxiao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Science, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Sedlmayr VL, Széliová D, De Kock V, Gansemans Y, Van Nieuwerburgh F, Peeters E, Quehenberger J, Zanghellini J, Spadiut O. Impact of nutrient excess on physiology and metabolism of Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1475385. [PMID: 39430106 PMCID: PMC11486757 DOI: 10.3389/fmicb.2024.1475385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Overflow metabolism is a well-known phenomenon that describes the seemingly wasteful and incomplete substrate oxidation by aerobic cells, such as yeasts, bacteria, and mammalian cells, even when conditions allow for total combustion via respiration. This cellular response, triggered by an excess of C-source, has not yet been investigated in archaea. In this study, we conducted chemostat cultivations to compare the metabolic and physiological states of the thermoacidophilic archaeon Sulfolobus acidocaldarius under three conditions, each with gradually increasing nutrient stress. Our results show that S. acidocaldarius has different capacities for the uptake of the two C-sources, monosodium glutamate and glucose. A saturated tricarboxylic acid cycle at elevated nutrient concentrations affects the cell's ability to deplete its intermediates. This includes deploying additional cataplerotic pathways and the secretion of amino acids, notably valine, glycine, and alanine, while glucose is increasingly metabolized via glycogenesis. We did not observe the secretion of common fermentation products, like organic acids. Transcriptomic analysis indicated an upregulation of genes involved in fatty acid metabolism, suggesting the intracellular conservation of energy. Adapting respiratory enzymes under nutrient stress indicated high metabolic flexibility and robust regulatory mechanisms in this archaeon. This study enhances our fundamental understanding of the metabolism of S. acidocaldarius.
Collapse
Affiliation(s)
- Viktor Laurin Sedlmayr
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Diana Széliová
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Veerke De Kock
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julian Quehenberger
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
6
|
Sastry AV, Yuan Y, Poudel S, Rychel K, Yoo R, Lamoureux CR, Li G, Burrows JT, Chauhan S, Haiman ZB, Al Bulushi T, Seif Y, Palsson BO, Zielinski DC. iModulonMiner and PyModulon: Software for unsupervised mining of gene expression compendia. PLoS Comput Biol 2024; 20:e1012546. [PMID: 39441835 PMCID: PMC11534266 DOI: 10.1371/journal.pcbi.1012546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Public gene expression databases are a rapidly expanding resource of organism responses to diverse perturbations, presenting both an opportunity and a challenge for bioinformatics workflows to extract actionable knowledge of transcription regulatory network function. Here, we introduce a five-step computational pipeline, called iModulonMiner, to compile, process, curate, analyze, and characterize the totality of RNA-seq data for a given organism or cell type. This workflow is centered around the data-driven computation of co-regulated gene sets using Independent Component Analysis, called iModulons, which have been shown to have broad applications. As a demonstration, we applied this workflow to generate the iModulon structure of Bacillus subtilis using all high-quality, publicly-available RNA-seq data. Using this structure, we predicted regulatory interactions for multiple transcription factors, identified groups of co-expressed genes that are putatively regulated by undiscovered transcription factors, and predicted properties of a recently discovered single-subunit phage RNA polymerase. We also present a Python package, PyModulon, with functions to characterize, visualize, and explore computed iModulons. The pipeline, available at https://github.com/SBRG/iModulonMiner, can be readily applied to diverse organisms to gain a rapid understanding of their transcriptional regulatory network structure and condition-specific activity.
Collapse
Affiliation(s)
- Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Yuan Yuan
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Reo Yoo
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Gaoyuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Joshua T. Burrows
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Siddharth Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Zachary B. Haiman
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Tahani Al Bulushi
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Yuan Y, Al Bulushi T, Sastry AV, Sancar C, Szubin R, Golden SS, Palsson BO. Machine learning reveals the transcriptional regulatory network and circadian dynamics of Synechococcus elongatus PCC 7942. Proc Natl Acad Sci U S A 2024; 121:e2410492121. [PMID: 39269777 PMCID: PMC11420160 DOI: 10.1073/pnas.2410492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Synechococcus elongatus is an important cyanobacterium that serves as a versatile and robust model for studying circadian biology and photosynthetic metabolism. Its transcriptional regulatory network (TRN) is of fundamental interest, as it orchestrates the cell's adaptation to the environment, including its response to sunlight. Despite the previous characterization of constituent parts of the S. elongatus TRN, a comprehensive layout of its topology remains to be established. Here, we decomposed a compendium of 300 high-quality RNA sequencing datasets of the model strain PCC 7942 using independent component analysis. We obtained 57 independently modulated gene sets, or iModulons, that explain 67% of the variance in the transcriptional response and 1) accurately reflect the activity of known transcriptional regulations, 2) capture functional components of photosynthesis, 3) provide hypotheses for regulon structures and functional annotations of poorly characterized genes, and 4) describe the transcriptional shifts under dynamic light conditions. This transcriptome-wide analysis of S. elongatus provides a quantitative reconstruction of the TRN and presents a knowledge base that can guide future investigations. Our systems-level analysis also provides a global TRN structure for S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Yuan Yuan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Tahani Al Bulushi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Anand V. Sastry
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Cigdem Sancar
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Richard Szubin
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Bernhard O. Palsson
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA92093
- Department of Pediatrics, University of California, San Diego, La Jolla, CA92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby2800, Denmark
| |
Collapse
|
8
|
Phaneuf PV, Kim SH, Rychel K, Rode C, Beulig F, Palsson BO, Yang L. Meta-analysis Driven Strain Design for Mitigating Oxidative Stresses Important in Biomanufacturing. ACS Synth Biol 2024; 13:2045-2059. [PMID: 38934464 PMCID: PMC11264330 DOI: 10.1021/acssynbio.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
As the availability of data sets increases, meta-analysis leveraging aggregated and interoperable data types is proving valuable. This study leveraged a meta-analysis workflow to identify mutations that could improve robustness to reactive oxygen species (ROS) stresses using an industrially important melatonin production strain as an example. ROS stresses often occur during cultivation and negatively affect strain performance. Cellular response to ROS is also linked to the SOS response and resistance to pH fluctuations, which is important to strain robustness in large-scale biomanufacturing. This work integrated more than 7000 E. coli adaptive laboratory evolution (ALE) mutations across 59 experiments to statistically associate mutated genes to 2 ROS tolerance ALE conditions from 72 unique conditions. Mutant oxyR, fur, iscR, and ygfZ were significantly associated and hypothesized to contribute fitness in ROS stress. Across these genes, 259 total mutations were inspected in conjunction with transcriptomics from 46 iModulon experiments. Ten mutations were chosen for reintroduction based on mutation clustering and coinciding transcriptional changes as evidence of fitness impact. Strains with mutations reintroduced into oxyR, fur, iscR, and ygfZ exhibited increased tolerance to H2O2 and acid stress and reduced SOS response, all of which are related to ROS. Additionally, new evidence was generated toward understanding the function of ygfZ, an uncharacterized gene. This meta-analysis approach utilized aggregated and interoperable multiomics data sets to identify mutations conferring industrially relevant phenotypes with the least drawbacks, describing an approach for data-driven strain engineering to optimize microbial cell factories.
Collapse
Affiliation(s)
- PV Phaneuf
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - SH Kim
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - K Rychel
- Department
of Bioengineering, University of California,
San Diego, La Jolla ,California92093-0412 ,United States
| | - C Rode
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - F Beulig
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - BO Palsson
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
- Department
of Bioengineering, University of California,
San Diego, La Jolla ,California92093-0412 ,United States
- Bioinformatics
and Systems Biology Program, University
of California, San Diego, La Jolla ,California92093-0021, United States
- Department
of Pediatrics, University of California,
San Diego, La Jolla ,California 92093-0412, United States
| | - L Yang
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| |
Collapse
|
9
|
Patel A, McGrosso D, Hefner Y, Campeau A, Sastry AV, Maurya S, Rychel K, Gonzalez DJ, Palsson BO. Proteome allocation is linked to transcriptional regulation through a modularized transcriptome. Nat Commun 2024; 15:5234. [PMID: 38898010 PMCID: PMC11187210 DOI: 10.1038/s41467-024-49231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
It has proved challenging to quantitatively relate the proteome to the transcriptome on a per-gene basis. Recent advances in data analytics have enabled a biologically meaningful modularization of the bacterial transcriptome. We thus investigate whether matched datasets of transcriptomes and proteomes from bacteria under diverse conditions can be modularized in the same way to reveal novel relationships between their compositions. We find that; (1) the modules of the proteome and the transcriptome are comprised of a similar list of gene products, (2) the modules in the proteome often represent combinations of modules from the transcriptome, (3) known transcriptional and post-translational regulation is reflected in differences between two sets of modules, allowing for knowledge-mapping when interpreting module functions, and (4) through statistical modeling, absolute proteome allocation can be inferred from the transcriptome alone. Quantitative and knowledge-based relationships can thus be found at the genome-scale between the proteome and transcriptome in bacteria.
Collapse
Affiliation(s)
- Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dominic McGrosso
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Svetlana Maurya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
10
|
Menon ND, Poudel S, Sastry AV, Rychel K, Szubin R, Dillon N, Tsunemoto H, Hirose Y, Nair BG, Kumar GB, Palsson BO, Nizet V. Independent component analysis reveals 49 independently modulated gene sets within the global transcriptional regulatory architecture of multidrug-resistant Acinetobacter baumannii. mSystems 2024; 9:e0060623. [PMID: 38189271 PMCID: PMC10878099 DOI: 10.1128/msystems.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Acinetobacter baumannii causes severe infections in humans, resists multiple antibiotics, and survives in stressful environmental conditions due to modulations of its complex transcriptional regulatory network (TRN). Unfortunately, our global understanding of the TRN in this emerging opportunistic pathogen is limited. Here, we apply independent component analysis, an unsupervised machine learning method, to a compendium of 139 RNA-seq data sets of three multidrug-resistant A. baumannii international clonal complex I strains (AB5075, AYE, and AB0057). This analysis allows us to define 49 independently modulated gene sets, which we call iModulons. Analysis of the identified A. baumannii iModulons reveals validating parallels to previously defined biological operons/regulons and provides a framework for defining unknown regulons. By utilizing the iModulons, we uncover potential mechanisms for a RpoS-independent general stress response, define global stress-virulence trade-offs, and identify conditions that may induce plasmid-borne multidrug resistance. The iModulons provide a model of the TRN that emphasizes the importance of transcriptional regulation of virulence phenotypes in A. baumannii. Furthermore, they suggest the possibility of future interventions to guide gene expression toward diminished pathogenic potential.IMPORTANCEThe rise in hospital outbreaks of multidrug-resistant Acinetobacter baumannii infections underscores the urgent need for alternatives to traditional broad-spectrum antibiotic therapies. The success of A. baumannii as a significant nosocomial pathogen is largely attributed to its ability to resist antibiotics and survive environmental stressors. However, there is limited literature available on the global, complex regulatory circuitry that shapes these phenotypes. Computational tools that can assist in the elucidation of A. baumannii's transcriptional regulatory network architecture can provide much-needed context for a comprehensive understanding of pathogenesis and virulence, as well as for the development of targeted therapies that modulate these pathways.
Collapse
Affiliation(s)
- Nitasha D. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Nicholas Dillon
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Biological Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yujiro Hirose
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Zhao J, Sun X, Mao Z, Zheng Y, Geng Z, Zhang Y, Ma H, Wang Z. Independent component analysis of Corynebacterium glutamicum transcriptomes reveals its transcriptional regulatory network. Microbiol Res 2023; 276:127485. [PMID: 37683565 DOI: 10.1016/j.micres.2023.127485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Gene expression in bacteria is regulated by multiple transcription factors. Clarifying the regulation mechanism of gene expression is necessary to understand bacterial physiological activities. To further understand the structure of the transcriptional regulatory network of Corynebacterium glutamicum, we applied independent component analysis, an unsupervised machine learning algorithm, to the high-quality C. glutamicum gene expression profile which includes 263 samples from 29 independent projects. We obtained 87 robust independent regulatory modules (iModulons). These iModulons explain 76.7% of the variance in the expression profile and constitute the quantitative transcriptional regulatory network of C. glutamicum. By analyzing the constituent genes in iModulons, we identified potential targets for 20 transcription factors. We also captured the changes in iModulon activities under different growth rates and dissolved oxygen concentrations, demonstrating the ability of iModulons to comprehensively interpret transcriptional responses to environmental changes. In summary, this study provides a genome-scale quantitative transcriptional regulatory network for C. glutamicum and informs future research on complex changes in the transcriptome.
Collapse
Affiliation(s)
- Jianxiao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xi Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhitao Mao
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhouxiao Geng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuhan Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Lamoureux CR, Decker KT, Sastry AV, Rychel K, Gao Y, McConn J, Zielinski D, Palsson BO. A multi-scale expression and regulation knowledge base for Escherichia coli. Nucleic Acids Res 2023; 51:10176-10193. [PMID: 37713610 PMCID: PMC10602906 DOI: 10.1093/nar/gkad750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Cameron R Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine T Decker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Luke McConn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Rychel K, Tan J, Patel A, Lamoureux C, Hefner Y, Szubin R, Johnsen J, Mohamed ETT, Phaneuf PV, Anand A, Olson CA, Park JH, Sastry AV, Yang L, Feist AM, Palsson BO. Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance. Cell Rep 2023; 42:113105. [PMID: 37713311 PMCID: PMC10591938 DOI: 10.1016/j.celrep.2023.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/09/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.
Collapse
Affiliation(s)
- Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Tan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Elsayed Tharwat Tolba Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Patrick V Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Amitesh Anand
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra, India
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76, Cambridge, MA 02139, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Gao ZP, Gu WC, Li J, Qiu QT, Ma BG. Independent Component Analysis Reveals the Transcriptional Regulatory Modules in Bradyrhizobium diazoefficiens USDA110. Int J Mol Sci 2023; 24:12544. [PMID: 37628727 PMCID: PMC10454721 DOI: 10.3390/ijms241612544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The dynamic adaptation of bacteria to environmental changes is achieved through the coordinated expression of many genes, which constitutes a transcriptional regulatory network (TRN). Bradyrhizobium diazoefficiens USDA110 is an important model strain for the study of symbiotic nitrogen fixation (SNF), and its SNF ability largely depends on the TRN. In this study, independent component analysis was applied to 226 high-quality gene expression profiles of B. diazoefficiens USDA110 microarray datasets, from which 64 iModulons were identified. Using these iModulons and their condition-specific activity levels, we (1) provided new insights into the connection between the FixLJ-FixK2-FixK1 regulatory cascade and quorum sensing, (2) discovered the independence of the FixLJ-FixK2-FixK1 and NifA/RpoN regulatory cascades in response to oxygen, (3) identified the FixLJ-FixK2 cascade as a mediator connecting the FixK2-2 iModulon and the Phenylalanine iModulon, (4) described the differential activation of iModulons in B. diazoefficiens USDA110 under different environmental conditions, and (5) proposed a notion of active-TRN based on the changes in iModulon activity to better illustrate the relationship between gene regulation and environmental condition. In sum, this research offered an iModulon-based TRN for B. diazoefficiens USDA110, which formed a foundation for comprehensively understanding the intricate transcriptional regulation during SNF.
Collapse
Affiliation(s)
| | | | | | | | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-P.G.); (W.-C.G.); (J.L.); (Q.-T.Q.)
| |
Collapse
|
15
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Breuer R, Gomes-Filho JV, Yuan J, Randau L. Transcriptome profiling of Nudix hydrolase gene deletions in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Front Microbiol 2023; 14:1197877. [PMID: 37396357 PMCID: PMC10311068 DOI: 10.3389/fmicb.2023.1197877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121). Deletion strains were generated for the four individual Nudix genes and for both Nudix genes annotated to encode ADP-ribose pyrophosphatases (SACI_RS00730, SACI_RS00060) and did not reveal a distinct phenotype compared to the wild-type strain under standard growth conditions, nutrient stress or heat stress conditions. We employed RNA-seq to establish the transcriptome profiles of the Nudix deletion strains, revealing a large number of differentially regulated genes, most notably in the ΔSACI_RS00730/SACI_RS00060 double knock-out strain and the ΔSACI_RS00575 single deletion strain. The absence of Nudix hydrolases is suggested to impact transcription via differentially regulated transcriptional regulators. We observed downregulation of the lysine biosynthesis and the archaellum formation iModulons in stationary phase cells, as well as upregulation of two genes involved in the de novo NAD+ biosynthesis pathway. Furthermore, the deletion strains exhibited upregulation of two thermosome subunits (α, β) and the toxin-antitoxin system VapBC, which are implicated in the archaeal heat shock response. These results uncover a defined set of pathways that involve archaeal Nudix protein activities and assist in their functional characterization.
Collapse
Affiliation(s)
- Ruth Breuer
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Lennart Randau
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
17
|
Patel A, McGrosso D, Hefner Y, Campeau A, Sastry AV, Maurya S, Rychel K, Gonzalez DJ, Palsson BO. Proteome allocation is linked to transcriptional regulation through a modularized transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529291. [PMID: 36865326 PMCID: PMC9980150 DOI: 10.1101/2023.02.20.529291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
It has proved challenging to quantitatively relate the proteome to the transcriptome on a per-gene basis. Recent advances in data analytics have enabled a biologically meaningful modularization of the bacterial transcriptome. We thus investigated whether matched datasets of transcriptomes and proteomes from bacteria under diverse conditions could be modularized in the same way to reveal novel relationships between their compositions. We found that; 1) the modules of the proteome and the transcriptome are comprised of a similar list of gene products, 2) the modules in the proteome often represent combinations of modules from the transcriptome, 3) known transcriptional and post-translational regulation is reflected in differences between two sets of modules, allowing for knowledge-mapping when interpreting module functions, and 4) through statistical modeling, absolute proteome allocation can be inferred from the transcriptome alone. Quantitative and knowledge-based relationships can thus be found at the genome-scale between the proteome and transcriptome in bacteria.
Collapse
Affiliation(s)
- Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominic McGrosso
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Svetlana Maurya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Pan-Genome Analysis of Transcriptional Regulation in Six Salmonella enterica Serovar Typhimurium Strains Reveals Their Different Regulatory Structures. mSystems 2022; 7:e0046722. [PMID: 36317888 PMCID: PMC9764980 DOI: 10.1128/msystems.00467-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Establishing transcriptional regulatory networks (TRNs) in bacteria has been limited to well-characterized model strains. Using machine learning methods, we established the transcriptional regulatory networks of six Salmonella enterica serovar Typhimurium strains from their transcriptomes. By decomposing a compendia of RNA sequencing (RNA-seq) data with independent component analysis, we obtained 400 independently modulated sets of genes, called iModulons. We (i) performed pan-genome analysis of the phylogroup structure of S. Typhimurium and analyzed the iModulons against this background, (ii) revealed different genetic signatures in pathogenicity islands that explained phenotypes, (iii) discovered three transport iModulons linked to antibiotic resistance, (iv) described concerted responses to cationic antimicrobial peptides, and (v) uncovered new regulons. Thus, by combining pan-genome and transcriptomic analytics, we revealed variations in TRNs across six strains of serovar Typhimurium. IMPORTANCE Salmonella enterica serovar Typhimurium is a pathogen involved in human nontyphoidal infections. Treating S. Typhimurium infections is difficult due to the species's dynamic adaptation to its environment, which is dictated by a complex transcriptional regulatory network (TRN) that is different across strains. In this study, we describe the use of independent component analysis to characterize the differential TRNs across the S. Typhimurium pan-genome using a compendium of high-quality RNA-seq data. This approach provided unprecedented insights into the differences between regulation of key cellular functions and pathogenicity in the different strains. The study provides an impetus to initiate a large-scale effort to reveal the TRN differences between the major phylogroups of the pathogenic bacteria, which could fundamentally impact personalizing treatments of bacterial pathogens.
Collapse
|
19
|
Poudel S, Hefner Y, Szubin R, Sastry A, Gao Y, Nizet V, Palsson BO. Coordination of CcpA and CodY Regulators in Staphylococcus aureus USA300 Strains. mSystems 2022; 7:e0048022. [PMID: 36321827 PMCID: PMC9765215 DOI: 10.1128/msystems.00480-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
The complex cross talk between metabolism and gene regulatory networks makes it difficult to untangle individual constituents and study their precise roles and interactions. To address this issue, we modularized the transcriptional regulatory network (TRN) of the Staphylococcus aureus USA300 strain by applying independent component analysis (ICA) to 385 RNA sequencing samples. We then combined the modular TRN model with a metabolic model to study the regulation of carbon and amino acid metabolism. Our analysis showed that regulation of central carbon metabolism by CcpA and amino acid biosynthesis by CodY are closely coordinated. In general, S. aureus increases the expression of CodY-regulated genes in the presence of preferred carbon sources such as glucose. This transcriptional coordination was corroborated by metabolic model simulations that also showed increased amino acid biosynthesis in the presence of glucose. Further, we found that CodY and CcpA cooperatively regulate the expression of ribosome hibernation-promoting factor, thus linking metabolic cues with translation. In line with this hypothesis, expression of CodY-regulated genes is tightly correlated with expression of genes encoding ribosomal proteins. Together, we propose a coarse-grained model where expression of S. aureus genes encoding enzymes that control carbon flux and nitrogen flux through the system is coregulated with expression of translation machinery to modularly control protein synthesis. While this work focuses on three key regulators, the full TRN model we present contains 76 total independently modulated sets of genes, each with the potential to uncover other complex regulatory structures and interactions. IMPORTANCE Staphylococcus aureus is a versatile pathogen with an expanding antibiotic resistance profile. The biology underlying its clinical success emerges from an interplay of many systems such as metabolism and gene regulatory networks. This work brings together models for these two systems to establish fundamental principles governing the regulation of S. aureus central metabolism and protein synthesis. Studies of these fundamental biological principles are often confined to model organisms such as Escherichia coli. However, expanding these models to pathogens can provide a framework from which complex and clinically important phenotypes such as virulence and antibiotic resistance can be better understood. Additionally, the expanded gene regulatory network model presented here can deconvolute the biology underlying other important phenotypes in this pathogen.
Collapse
Affiliation(s)
- Saugat Poudel
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Ying Hefner
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Anand Sastry
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Ye Gao
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
- Department of Biological Sciences, University of California San Diego, San Diego, California, USA
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego, San Diego, California, USA
| |
Collapse
|
20
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Chauhan SM, Pogliano J, Palsson BO. Advanced transcriptomic analysis reveals the role of efflux pumps and media composition in antibiotic responses of Pseudomonas aeruginosa. Nucleic Acids Res 2022; 50:9675-9688. [PMID: 36095122 PMCID: PMC9508857 DOI: 10.1093/nar/gkac743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and major cause of hospital-acquired infections. The virulence of P. aeruginosa is largely determined by its transcriptional regulatory network (TRN). We used 411 transcription profiles of P. aeruginosa from diverse growth conditions to construct a quantitative TRN by identifying independently modulated sets of genes (called iModulons) and their condition-specific activity levels. The current study focused on the use of iModulons to analyze the biofilm production and antibiotic resistance of P. aeruginosa. Our analysis revealed: (i) 116 iModulons, 81 of which show strong association with known regulators; (ii) novel roles of regulators in modulating antibiotics efflux pumps; (iii) substrate-efflux pump associations; (iv) differential iModulon activity in response to beta-lactam antibiotics in bacteriological and physiological media; (v) differential activation of 'Cell Division' iModulon resulting from exposure to different beta-lactam antibiotics and (vi) a role of the PprB iModulon in the stress-induced transition from planktonic to biofilm lifestyle. In light of these results, the construction of an iModulon-based TRN provides a transcriptional regulatory basis for key aspects of P. aeruginosa infection, such as antibiotic stress responses and biofilm formation. Taken together, our results offer a novel mechanistic understanding of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
21
|
Lim HG, Rychel K, Sastry AV, Bentley GJ, Mueller J, Schindel HS, Larsen PE, Laible PD, Guss AM, Niu W, Johnson CW, Beckham GT, Feist AM, Palsson BO. Machine-learning from Pseudomonas putida KT2440 transcriptomes reveals its transcriptional regulatory network. Metab Eng 2022; 72:297-310. [PMID: 35489688 DOI: 10.1016/j.ymben.2022.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Bacterial gene expression is orchestrated by numerous transcription factors (TFs). Elucidating how gene expression is regulated is fundamental to understanding bacterial physiology and engineering it for practical use. In this study, a machine-learning approach was applied to uncover the genome-scale transcriptional regulatory network (TRN) in Pseudomonas putida KT2440, an important organism for bioproduction. We performed independent component analysis of a compendium of 321 high-quality gene expression profiles, which were previously published or newly generated in this study. We identified 84 groups of independently modulated genes (iModulons) that explain 75.7% of the total variance in the compendium. With these iModulons, we (i) expand our understanding of the regulatory functions of 39 iModulon associated TFs (e.g., HexR, Zur) by systematic comparison with 1993 previously reported TF-gene interactions; (ii) outline transcriptional changes after the transition from the exponential growth to stationary phases; (iii) capture group of genes required for utilizing diverse carbon sources and increased stationary response with slower growth rates; (iv) unveil multiple evolutionary strategies of transcriptome reallocation to achieve fast growth rates; and (v) define an osmotic stimulon, which includes the Type VI secretion system, as coordination of multiple iModulon activity changes. Taken together, this study provides the first quantitative genome-scale TRN for P. putida KT2440 and a basis for a comprehensive understanding of its complex transcriptome changes in a variety of physiological states.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Gayle J Bentley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA
| | - Joshua Mueller
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588, USA
| | - Heidi S Schindel
- Biosciences Division, Oak Ridge National Laboratory, 5200 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60539, USA
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60539, USA
| | - Adam M Guss
- Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA; Biosciences Division, Oak Ridge National Laboratory, 5200 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
22
|
Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection. mSphere 2022; 7:e0003322. [PMID: 35306876 PMCID: PMC9044949 DOI: 10.1128/msphere.00033-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its transcriptional response to environmental stresses through its transcriptional regulatory network (TRN). While many studies have sought to characterize specific portions of the M. tuberculosis TRN, and some studies have performed system-level analysis, few have been able to provide a network-based model of the TRN that also provides the relative shifts in transcriptional regulator activity triggered by changing environments. Here, we compiled a compendium of nearly 650 publicly available, high quality M. tuberculosis RNA-sequencing data sets and applied an unsupervised machine learning method to obtain a quantitative, top-down TRN. It consists of 80 independently modulated gene sets known as “iModulons,” 41 of which correspond to known regulons. These iModulons explain 61% of the variance in the organism’s transcriptional response. We show that iModulons (i) reveal the function of poorly characterized regulons, (ii) describe the transcriptional shifts that occur during environmental changes such as shifting carbon sources, oxidative stress, and infection events, and (iii) identify intrinsic clusters of regulons that link several important metabolic systems, including lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M. tuberculosis TRN informs future research on effective ways to study and manipulate its transcriptional regulation and presents a knowledge-enhanced database of all published high-quality RNA-seq data for this organism to date. IMPORTANCEMycobacterium tuberculosis H37Rv is one of the world's most impactful pathogens, and a large part of the success of the organism relies on the differential expression of its genes to adapt to its environment. The expression of the organism's genes is driven primarily by its transcriptional regulatory network, and most research on the TRN focuses on identifying and quantifying clusters of coregulated genes known as regulons. While previous studies have relied on molecular measurements, in the manuscript we utilized an alternative technique that performs machine learning to a large data set of transcriptomic data. This approach is less reliant on hypotheses about the role of specific regulatory systems and allows for the discovery of new biological findings for already collected data. A better understanding of the structure of the M. tuberculosis TRN will have important implications in the design of improved therapeutic approaches.
Collapse
|