1
|
Moll L, Badosa E, De La Fuente L, Montesinos E, Planas M, Bonaterra A, Feliu L. Mitigation of Almond Leaf Scorch by a Peptide that Inhibits the Motility of Xylella fastidiosa. PLANT DISEASE 2025; 109:327-340. [PMID: 39254847 DOI: 10.1094/pdis-07-24-1414-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide, threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates and mobile independent cells that move by twitching motility. The latter is essential for the systemic colonization of the host and is mediated through type IV pili. In previous reports, it has been demonstrated that peptides can affect different key processes of X. fastidiosa, but their effect on motility has never been assessed. In the present work, peptides previously identified and newly designed analogs were studied for their effect in vitro on the motility of X. fastidiosa, and their protective effect against almond leaf scorch was determined. By assessing the twitching fringe width in colonies and using microfluidic chambers, the inhibitory effect of BP100 on twitching motility was demonstrated. Interestingly, type IV pili of BP100-treated cells were similar in frequency and length and presented no morphological differences when compared with the nontreated control. The application of BP100 by endotherapy in almond plants inoculated with X. fastidiosa under greenhouse conditions significantly reduced population levels and showed less affected xylem vessels, which correlated with decreased disease symptoms. Therefore, BP100 is a promising candidate to manage almond leaf scorch caused by X. fastidiosa.[Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| |
Collapse
|
2
|
Bayatli N, Malkawi AS, Malkawi A, Khaled K, Alrabadi N, Ovenseri AC, Alhajj L, Al Sarayrih L, Elnefaily SE. Impact of biofilms on healthcare settings and management strategies. REVIEWS AND RESEARCH IN MEDICAL MICROBIOLOGY 2024. [DOI: 10.1097/mrm.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025]
Abstract
The formation of biofilms on the surfaces of biomaterials in clinical settings is becoming more of a concern, especially with the rise of multidrug-resistant bacteria. They have contributed to high mortality and a major cost burden on healthcare systems. Obstacles related to biofilms have been complicated with the presence of very resistant bacterial strains to antimicrobial drugs, necessitating the development of alternative pathways to treat biofilm-related infections in addition to traditional antibiotics. So far, inhibitors that combat the formation of biofilms and the development of modified biomaterials for the manufacture of medical devices have been proposed as approaches to prevent biofilm formation in clinical practice settings. The self-produced extracellular polymeric substances that function as a protective shield, inhibiting antimicrobial penetration, are a key component of biofilms. Biofilms’ impact on medical settings, healthcare, and the economy as well as a brief description of stages involved in their development are discussed here. Furthermore, this review elucidates the two primary categories of biofilm management: preventing the formation of biofilms by inhibiting bacterial initial attachment and removing biofilms that have already formed. Preventive antibiofilm methods discussed in this review involve modifying the physical and chemical characteristics of biomaterials. In addition, removing biofilms using efficient physical and biomedical approaches and by interfering with the quorum-sensing system, which is essential for biofilm formation, are covered here. Moreover, several relevant examples of each method indicated for biofilm management are highlighted. Lastly, the ongoing progress in the field of biofilm research may reveal additional strategies for future biofilm management.
Collapse
Affiliation(s)
- Nur Bayatli
- Faculty of Pharmacy, Cyprus Health and Social Sciences University, Kutlu Adali Blv, Morphou (Guzelyurt)
| | - Ahmad Saleh Malkawi
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Queen Alya Airport Street, Amman
| | - Azhar Malkawi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Khaled Khaled
- Faculty of Pharmacy, Cyprus Health and Social Sciences University, Kutlu Adali Blv, Morphou (Guzelyurt)
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Lara Alhajj
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Lina Al Sarayrih
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | | |
Collapse
|
3
|
da Silva AM, Murillo DM, Anbumani S, von Zuben AA, Cavalli A, Obata HT, Fischer ER, de Souza E Silva M, Bakkers E, Souza AA, Carvalho HF, Cotta MA. N-acetylcysteine effects on extracellular polymeric substances of Xylella fastidiosa: A spatiotemporal investigation with implications for biofilm disruption. Int J Antimicrob Agents 2024; 64:107340. [PMID: 39299599 DOI: 10.1016/j.ijantimicag.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The matrix of extracellular polymeric substances (EPS) present in biofilms greatly amplifies the problem of bacterial infections, protecting bacteria against antimicrobial treatments and eventually leading to bacterial resistance. The need for alternative treatments that destroy the EPS matrix becomes evident. N-acetylcysteine (NAC) is one option that presents diverse effects against bacteria; however, the different mechanisms of action of NAC in biofilms have yet to be elucidated. OBJECTIVES In this work, we performed microscopy studies at micro and nano scales to address the effects of NAC at single cell level and early-stage biofilms of the Xylella fastidiosa phytopathogen. METHODS We show the physical effects of NAC on the adhesion surface and the different types of EPS, as well as the mechanical response of individual bacteria to NAC concentrations between 2 and 20 mg/mL. RESULTS NAC modified the conditioning film on the substrate, broke down the soluble EPS, resulting in the release of adherent bacteria, decreased the volume of loosely bound EPS, and disrupted the biofilm matrix. Tightly bound EPS suffered structural alterations despite no solid evidence of its removal. In addition, bacterial force measurements upon NAC action performed with InP nanowire arrays showed an enhanced momentum transfer to the nanowires due to increased cell mobility resulting from EPS removal. CONCLUSIONS Our results clearly show that conditioning film and soluble EPS play a key role in cell adhesion control and that NAC alters EPS structure, providing solid evidence that NAC actuates mainly on EPS removal, both at single cell and biofilm levels.
Collapse
Affiliation(s)
- Aldeliane M da Silva
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil.
| | - Duber M Murillo
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Silambarasan Anbumani
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Antonio Augusto von Zuben
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Alessandro Cavalli
- Applied Physics Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Helio T Obata
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| | - Eduarda Regina Fischer
- Citrus Research Center "Sylvio Moreira"/ Agronomic Institute - IAC, Cordeirópolis, São Paulo, Brazil
| | - Mariana de Souza E Silva
- Citrus Research Center "Sylvio Moreira"/ Agronomic Institute - IAC, Cordeirópolis, São Paulo, Brazil
| | - Erik Bakkers
- Applied Physics Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira"/ Agronomic Institute - IAC, Cordeirópolis, São Paulo, Brazil
| | | | - Mônica A Cotta
- Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Picchi SC, Rebelatto D, Martins PMM, Blumer S, Mesquita GL, Hippler FWR, Mattos D, Boaretto RM, Machado MA, Takita MA, Coletta-Filho HD, de Souza AA. N-acetylcysteine absorption and its potential dual effect improve fitness and fruit yield in Xylella fastidiosa infected plants. PEST MANAGEMENT SCIENCE 2024; 80:4333-4343. [PMID: 38647195 DOI: 10.1002/ps.8137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production. The primary method for managing diseases caused by X. fastidiosa involves using insecticides to control the vector. Hence, it is necessary to adopt new and sustainable disease management technologies to control not only the insect but also the bacteria and plant health. We demonstrated that N-acetylcysteine (NAC), a low-cost cysteine analogue, is a sustainable molecule that can be used in agriculture to decrease the damage caused by X. fastidiosa and improve plant health. RESULTS Using 15N-NAC we proved that this analogue was absorbed by the roots and transported to different parts of the plant. Inside the plant, NAC reduced the bacterial population by 60-fold and the number of xylem vessels blocked by bacterial biofilms. This reflected in a recovery of 0.28-fold of the daily sap flow compared to health plants. In addition, NAC-treated citrus variegated chlorosis (CVC) plants decreased the oxidative stress by improving the activity of detoxifying enzymes. Moreover, the use of NAC in field conditions positively contributed to the increase in fruit yield of CVC-diseased plants. CONCLUSION Our research not only advances the understanding of NAC absorption in plants, but also indicates its dual effect as an antimicrobial and antioxidant molecule. This, in turn, negatively affects bacterial survival while improving plant health by decreasing oxidative stress. Overall, the positive field-based evidence supports the viability of NAC as a sustainable agricultural application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Simone C Picchi
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Daniele Rebelatto
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Paula M M Martins
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Silvia Blumer
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Geisa L Mesquita
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Franz W R Hippler
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Dirceu Mattos
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Rodrigo M Boaretto
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Marco A Machado
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | - Marco A Takita
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| | | | - Alessandra A de Souza
- Citrus Research Center "Sylvio Moreira"-Agronomic Institute (IAC), Sao Paulo, Brazil
| |
Collapse
|
5
|
Thakur P, Gopalakrishnan V, Saxena P, Subramaniam M, Goh KM, Peyton B, Fields M, Sani RK. Influence of Copper on Oleidesulfovibrio alaskensis G20 Biofilm Formation. Microorganisms 2024; 12:1747. [PMID: 39338422 PMCID: PMC11434458 DOI: 10.3390/microorganisms12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Copper is known to have toxic effects on bacterial growth. This study aimed to determine the influence of copper ions on Oleidesulfovibrio alaskensis G20 biofilm formation in a lactate-C medium supplemented with variable copper ion concentrations. OA G20, when grown in media supplemented with high copper ion concentrations of 5, 15, and 30 µM, exhibited inhibited growth in its planktonic state. Conversely, under similar copper concentrations, OA G20 demonstrated enhanced biofilm formation on glass coupons. Microscopic studies revealed that biofilms exposed to copper stress demonstrated a change in cellular morphology and more accumulation of carbohydrates and proteins than controls. Consistent with these findings, sulfur (dsrA, dsrB, sat, aprA) and electron transport (NiFeSe, NiFe, ldh, cyt3) genes, polysaccharide synthesis (poI), and genes involved in stress response (sodB) were significantly upregulated in copper-induced biofilms, while genes (ftsZ, ftsA, ftsQ) related to cellular division were negatively regulated compared to controls. These results indicate that the presence of copper ions triggers alterations in cellular morphology and gene expression levels in OA G20, impacting cell attachment and EPS production. This adaptation, characterized by increased biofilm formation, represents a crucial strategy employed by OA G20 to resist metal ion stress.
Collapse
Affiliation(s)
- Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Brent Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Matthew Fields
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD 57701, USA
| |
Collapse
|
6
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
7
|
De La Fuente L, Navas-Cortés JA, Landa BB. Ten Challenges to Understanding and Managing the Insect-Transmitted, Xylem-Limited Bacterial Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:869-884. [PMID: 38557216 DOI: 10.1094/phyto-12-23-0476-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Juan A Navas-Cortés
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Blanca B Landa
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
8
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
9
|
Abstract
Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are (a) the requirement of stability in the plant environment and counteracting resistance in pathogen populations, (b) the need to develop suitable formulations to increase their shelf life and methods of application, (c) the selection of compounds with acceptable toxicological profiles, and (d) the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.
Collapse
Affiliation(s)
- Emilio Montesinos
- Institute of Food and Agricultural Technology, Plant Pathology-CIDSAV, University of Girona, Girona, Spain;
| |
Collapse
|
10
|
Sabri M, El Handi K, Valentini F, De Stradis A, Achbani EH, Benkirane R, Elbeaino T. Exploring Antimicrobial Peptides Efficacy against Fire Blight ( Erwinia amylovora). PLANTS (BASEL, SWITZERLAND) 2022; 12:113. [PMID: 36616240 PMCID: PMC9824012 DOI: 10.3390/plants12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are a various group of molecules found in a wide range of organisms and act as a defense mechanism against different kinds of infectious pathogens (bacteria, viruses, and fungi, etc.). This study explored the antibacterial activity of nine candidates reported in the literature for their effect on human and animal bacteria, (i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) against Erwinia amylovora (E. amylovora), the causal agent of fire blight disease on pome fruits. The antibacterial activity of these peptides against E. amylovora was evaluated in vitro using viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM), while the in vivo control efficacy was evaluated in treating experimental fire blight on pear fruits. With a view to their safe and ecofriendly field use in the future, the study also used animal and plant eukaryotic cells to evaluate the possible toxicity of these AMPs. Results in vitro showed that KL29 was the most potent peptide in inhibiting E. amylovora cell proliferation. In addition, the results of v-qPCR, FM, and TEM showed that KL29 has a bifunctional mechanism of action (lytic and non-lytic) when used at different concentrations against E. amylovora. KL29 reduced fire blight symptoms by 85% when applied experimentally in vivo. Furthermore, it had no impact on animal or plant cells, thus demonstrating its potential for safe use as an antibacterial agent. This study sheds light on a new and potent antibacterial peptide for E. amylovora and its modes of action, which could be exploited to develop sustainable treatments for fire blight.
Collapse
Affiliation(s)
- Miloud Sabri
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Kaoutar El Handi
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Franco Valentini
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Via Amendola 165/A, 70126 Bari, BA, Italy
| | - El Hassan Achbani
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
| | - Rachid Benkirane
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| |
Collapse
|
11
|
Exploring Active Peptides with Antimicrobial Activity In Planta against Xylella fastidiosa. BIOLOGY 2022; 11:biology11111685. [DOI: 10.3390/biology11111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited quarantine plant bacterium and one of the most harmful agricultural pathogens across the world. Despite significant research efforts, neither a direct treatment nor an efficient strategy has yet been developed for combatting Xylella-associated diseases. Antimicrobial peptides (AMPs) have been gaining interest as a promising sustainable tool to control pathogens due to their unique mechanism of action, broad spectrum of activity, and low environmental impact. In this study, we disclose the bioactivity of nine AMPs reported in the literature to be efficient against human and plant pathogen bacteria, i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, against Xf, through in vitro and in vivo experiments. Based on viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM) assays, peptides Ascaphin-8 (GF19), DASamP1 (FF13), and DASamP2 (IL14) demonstrated the highest bactericidal and antibiofilm activities and were more efficient than the peptide PB178 (KL29), reported as one of the most potent AMPs against Xf at present. Furthermore, these AMPs showed low to no toxicity when tested on eukaryotic cells. In in planta tests, no Xf disease symptoms were noticed in Nicotiana tabacum plants treated with the AMPs 40 days post inoculation. This study highlighted the high antagonistic activity of newly tested AMP candidates against Xf, which could lead to the development of promising eco-friendly management of Xf-related diseases.
Collapse
|
12
|
Synthetic Peptides against Plant Pathogenic Bacteria. Microorganisms 2022; 10:microorganisms10091784. [PMID: 36144386 PMCID: PMC9504393 DOI: 10.3390/microorganisms10091784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The control of plant diseases caused by bacteria that seriously compromise crop productivity around the world is still one of the most important challenges in food security. Integrated approaches for disease control generally lack plant protection products with high efficacy and low environmental and health adverse effects. Functional peptides, either from natural sources or synthetic, are considered as novel candidates to develop biopesticides. Synthetic peptides can be obtained based on the structure of natural compounds or de novo designed, considering the features of antimicrobial peptides. The advantage of this approach is that analogues can be conveniently prepared, enabling the identification of sequences with improved biological properties. Several peptide libraries have been designed and synthetized, and the best sequences showed strong bactericidal activity against important plant pathogenic bacteria, with a good profile of biodegradability and low toxicity. Among these sequences, there are bacteriolytic or antibiofilm peptides that work against the target bacteria, plant defense elicitor peptides, and multifunctional peptides that display several of these properties. Here, we report the research performed by our groups during the last twenty years, as well as our ongoing work. We also highlight those peptides that can be used as candidates to develop novel biopesticides, and the main challenges and prospects.
Collapse
|
13
|
Moll L, Baró A, Montesinos L, Badosa E, Bonaterra A, Montesinos E. Induction of Defense Responses and Protection of Almond Plants Against Xylella fastidiosa by Endotherapy with a Bifunctional Peptide. PHYTOPATHOLOGY 2022; 112:1907-1916. [PMID: 35384723 DOI: 10.1094/phyto-12-21-0525-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), causing significant yield losses in economically important Mediterranean crops. Almond leaf scorch (ALS) is currently one of the most relevant diseases observed in Spain, and no cure has been found to be effective for this disease. In previous reports, the peptide BP178 has shown a strong bactericidal activity in vitro against X. fastidiosa and to other plant pathogens, and to trigger defense responses in tomato plants. In the present work, BP178 was applied by endotherapy to almond plants of cultivar Avijor using preventive and curative strategies. The capacity of BP178 to reduce the population levels of X. fastidiosa and to decrease disease symptoms and its persistence over time were demonstrated under greenhouse conditions. The most effective treatment consisted of a combination of preventive and curative applications, and the peptide was detected in the stem up to 60 days posttreatment. Priming plants with BP178 induced defense responses mainly through the salicylic acid pathway, but also overexpressed some genes of the jasmonic acid and ethylene pathways. It is concluded that the bifunctional peptide is a promising candidate to be further developed to manage ALS caused by X. fastidiosa.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luís Moll
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Anna Bonaterra
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| |
Collapse
|
14
|
Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies.
Collapse
|