1
|
Tapaopong P, da Silva G, Holzschuh A, Rungsarityotin W, Suansomjit C, Pumchuea K, Manopwisedjaroen K, Khamsiriwatchara A, Khuntong P, Cui L, Koepfli C, Sattabongkot J, Nguitragool W. Molecular epidemiology and genetic diversity of disappearing Plasmodium vivax in southern Thailand. Sci Rep 2025; 15:2620. [PMID: 39838039 PMCID: PMC11751107 DOI: 10.1038/s41598-025-86578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase. Seventy P. vivax isolates, collected between 2017 and 2020, were genotyped for domain II of pvdbp and the 42-kDa region of pvmsp1 using amplicon deep sequencing. Data from Yala province were compared to published data from Tak province, where transmission was higher. Key analyses included nucleotide diversity (π), haplotype diversity (Hd), natural selection, recombination rates, and complexity of infection (COI). Genetic diversity in Yala was relatively low (π = 0.008dbp and 0.014msp1; Hd = 0.774dbp and 0.407msp1) compared to Tak (π = 0.012dbp and 0.027msp1; Hd = 0.849dbp and 0.962msp1). In Yala, polyclonal infections were found in 53.7% of pvdbpII and 47.8% of pvmsp142 isolates, with average COI of 1.6 and 1.7. Both genes were under balancing selection. Distinct genetic differences were found between Yala and Tak in pvmsp142, providing a local genotypic profile useful for tracing parasite origins.
Collapse
Affiliation(s)
- Parsakorn Tapaopong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gustavo da Silva
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Aurel Holzschuh
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Wasinee Rungsarityotin
- Mahidol University Frontier Research Facility, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanit Pumchuea
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Amnat Khamsiriwatchara
- Faculty of Tropical Medicine, Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Mahidol University, Bangkok, Thailand
| | - Podjadeach Khuntong
- Faculty of Tropical Medicine, Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhang M, Wang Y, Shen HM, Chen SB, Wang TY, Kassegne K, Chen JH. Genetic Diversity and Natural Selection of Plasmodium vivax Merozoite Surface Protein 8 in Global Populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105605. [PMID: 38759940 DOI: 10.1016/j.meegid.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) is a promising candidate target for the development of multi-component vaccines. Therefore, determining the genetic variation pattern of Pvmsp8 is essential in providing a reference for the rational design of the P. vivax malaria vaccines. This study delves into the genetic characteristics of the Pvmsp8 gene, specifically focusing on samples from the China-Myanmar border (CMB) region, and contrasts these findings with broader global patterns. The study uncovers that Pvmsp8 exhibits a notable level of conservation across different populations, with limited polymorphisms and relatively low nucleotide diversity (0.00023-0.00120). This conservation contrasts starkly with the high polymorphisms found in other P. vivax antigens such as Pvmsp1. A total of 25 haplotypes and 14 amino acid mutation sites were identified in the global populations, and all mutation sites were confined to non-functional regions. The study also notes that most CMB Pvmsp8 haplotypes are shared among Burmese, Cambodian, Thai, and Vietnamese populations, indicating less geographical variance, but differ notably from those found in Pacific island regions or the Panama. The findings underscore the importance of considering regional genetic diversity in P. vivax when developing targeted malaria vaccines. Non departure from neutral evolution were found by Tajima's D test, however, statistically significant differences were observed between the kn/ks rates. The study's findings are crucial in understanding the evolution and population structure of the Pvmsp8 gene, particularly during regional malaria elimination efforts. The highly conserved nature of Pvmsp8, combined with the lack of mutations in its functional domain, presents it as a promising candidate for developing a broad and effective P. vivax vaccine. This research thus lays a foundation for the rational development of multivalent malaria vaccines targeting this genetically stable antigen.
Collapse
Affiliation(s)
- Man Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Yue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, People's Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Tian-Yu Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou 571199, China.
| |
Collapse
|
3
|
Abebe A, Dieng CC, Dugassa S, Abera D, Shenkutie TT, Assefa A, Menard D, Lo E, Golassa L. Genetic differentiation of Plasmodium vivax duffy binding protein in Ethiopia and comparison with other geographical isolates. Malar J 2024; 23:55. [PMID: 38395885 PMCID: PMC10885561 DOI: 10.1186/s12936-024-04887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria. METHODS A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7. RESULTS The mean age of the participants was 25 years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 ± 0.00023 and 0.731 ± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 ± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe. CONCLUSIONS PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.
Collapse
Affiliation(s)
- Abnet Abebe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia.
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Cheikh Cambel Dieng
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia
| | - Deriba Abera
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia
| | - Tassew T Shenkutie
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | - Ashenafi Assefa
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Didier Menard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Dynamics of Host-Pathogen Interactions, Université de Strasbourg, Institute of Parasitology and Tropical Diseases, 67000, Strasbourg, France
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 24756, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Tapaopong P, da Silva G, Chainarin S, Suansomjit C, Manopwisedjaroen K, Cui L, Koepfli C, Sattabongkot J, Nguitragool W. Genetic diversity and molecular evolution of Plasmodium vivax Duffy Binding Protein and Merozoite Surface Protein-1 in northwestern Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105467. [PMID: 37330027 PMCID: PMC10548344 DOI: 10.1016/j.meegid.2023.105467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The local diversity and population structure of malaria parasites vary across different regions of the world, reflecting variations in transmission intensity, host immunity, and vector species. This study aimed to use amplicon sequencing to investigate the genotypic patterns and population structure of P. vivax isolates from a highly endemic province of Thailand in recent years. Amplicon deep sequencing was performed on 70 samples for the 42-kDa region of pvmsp1 and domain II of pvdbp. Unique haplotypes were identified and a network constructed to illustrate genetic relatedness in northwestern Thailand. Based on this dataset of 70 samples collected between 2015 and 2021, 16 and 40 unique haplotypes were identified in pvdbpII and pvmsp142kDa, respectively. Nucleotide diversity was higher in pvmsp142kDa than in pvdbpII (π = 0.027 and 0.012), as was haplotype diversity (Hd = 0.962 and 0.849). pvmsp142kDa also showed a higher recombination rate and higher levels of genetic differentiation (Fst) in northwestern Thailand versus other regions (0.2761-0.4881). These data together suggested that the genetic diversity of P. vivax in northwestern Thailand at these two studied loci evolved under a balancing selection, most likely host immunity. The lower genetic diversity of pvdbpII may reflect its stronger functional constrain. In addition, despite the balancing selection, a decrease in genetic diversity was observed. Hd of pvdbpII decreased from 0.874 in 2015-2016 to 0.778 in 2018-2021; π of pvmsp142kDa decreased from 0.030 to 0.022 over the same period. Thus, the control activities must have had a strong impact on the parasite population size. The findings from this study provide an understanding of P. vivax population structure and the evolutionary force on vaccine candidates. They also established a new baseline for tracking future changes in P. vivax diversity in the most malarious area of Thailand.
Collapse
Affiliation(s)
- Parsakorn Tapaopong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gustavo da Silva
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sittinont Chainarin
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|