1
|
Vázquez-Rosas-Landa M, Pérez-Ceballos R, Zaldívar-Jiménez A, Hereira S, Pérez González L, Prieto-Davó A, Celis-Hernández O, Canales-Delgadillo JC. Impact of seasonal flooding and hydrological connectivity loss on microbial community dynamics in mangrove sediments of the southern Gulf of Mexico. PeerJ 2025; 13:e19371. [PMID: 40343087 PMCID: PMC12060900 DOI: 10.7717/peerj.19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Background Mangrove ecosystems play essential roles in coastal resilience, carbon sequestration, and biodiversity but are under increasing threat from anthropogenic pressures. This study explores the impact of hydrological variability on microbial communities in mangrove sediments of the southern Gulf of Mexico. Methods We employed 16S rRNA sequencing to assess microbial diversity and function across different hydrological zones, seasons, and sediment depths at Estero Pargo. Results Our results show that microbial community composition is significantly influenced by hydrological conditions, with distinct microbial assemblages observed across the fringe, basin, and impaired zones. Seasonal variations were particularly pronounced, with higher microbial diversity during the flood season compared to the dry season. Depth also played a critical role, with surface layers (5 cm) predominantly featuring aerobic microbial communities, while deeper layers (20-40 cm) harbored anaerobic taxa such as Bathyarchaeota and Thermococcaceae. Notably, the impaired zone showed enrichment in genes related to denitrification and sulfur oxidation pathways, indicating strong microbial adaptation to reduced environments. These findings highlight the intricate interactions between microbial dynamics and environmental factors in mangrove ecosystems. Understanding these relationships is crucial for developing effective conservation and management strategies that enhance mangrove resilience in the face of global environmental changes.
Collapse
Affiliation(s)
- Mirna Vázquez-Rosas-Landa
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Rosela Pérez-Ceballos
- Instituto de Ciencias del Mar y Limnología Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, Campeche, Mexico
- Secretaría de Ciencias, Humanidades, Tecnologíae Innovación (SECIHTI), Mexico, Mexico
| | | | - Stephanie Hereira
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Leonardo Pérez González
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Alejandra Prieto-Davó
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto Abrigo, Yucatan, Mexico
| | - Omar Celis-Hernández
- Instituto de Ciencias del Mar y Limnología Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, Campeche, Mexico
- Secretaría de Ciencias, Humanidades, Tecnologíae Innovación (SECIHTI), Mexico, Mexico
| | - Julio Cesar Canales-Delgadillo
- Instituto de Ciencias del Mar y Limnología Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, Campeche, Mexico
- Secretaría de Ciencias, Humanidades, Tecnologíae Innovación (SECIHTI), Mexico, Mexico
| |
Collapse
|
2
|
Lee Y, Lee JS. Blue carbon ecosystems for hypoxia solution: how to maximize their carbon sequestration potential. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107202. [PMID: 40367633 DOI: 10.1016/j.marenvres.2025.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Blue carbon refers to the carbon captured and stored by coastal and oceanic ecosystems, such as mangroves, seagrasses, and salt marshes. These ecosystems are vital for biodiversity and play a crucial role in sequestering carbon dioxide from the atmosphere, helping to mitigate climate change, which can also provide economic value by evaluating payment for ecosystem services (PES) schemes. Additionally, they help regulate dissolved organic carbon, mitigate eutrophication, and improve water quality, reducing the impact of global deoxygenation. Conserving and restoring blue carbon ecosystems are vital for mitigating hypoxia, enhancing biodiversity, and supporting various ecosystem services. Moreover, genomic research on blue carbon plants and microbes reveals adaptive traits that enhance resilience to hypoxia and environmental stress. Integrating conservation, restoration, and molecular approaches will maximize their carbon sequestration potential, ensuring ecological stability and climate adaptation. This review aims to provide an overview of blue carbon and its significance, particularly in addressing hypoxia, highlighting the critical need for investigating hypoxia responses and microbial interactions to fully understand the mechanisms of carbon sequestration and hypoxia mitigation.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Liu Y, Chen S, Liang J, Song J, Sun Y, Liao R, Liang M, Cao H, Chen X, Wu Y, Bei L, Pan Y, Yan B, Li Y, Tao Y, Bu R, Gong B. Bacterial Community Structure and Environmental Driving Factors in the Surface Sediments of Six Mangrove Sites from Guangxi, China. Microorganisms 2024; 12:2607. [PMID: 39770809 PMCID: PMC11678403 DOI: 10.3390/microorganisms12122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Mangroves, as blue carbon reservoirs, provide a unique habitat for supporting a variety of microorganisms. Among these, bacteria play crucial roles in the biogeochemical processes of mangrove sediments. However, little is known about their community composition, spatial distribution patterns, and environmental driving factors, particularly across the large geographical scales of mangrove wetlands. In this study, the composition and spatial distribution of the bacterial community structure and its response to fifteen physicochemical parameters (including temperature, pH, salinity, moisture, clay, silt, sand, organic carbon (OC), total nitrogen (TN), total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), δ13C, δ15N, and carbon/nitrogen ratio (C/N ratio)) were characterized in 32 sampling locations of six different mangrove habitats from Guangxi, China, applying 16S rRNA gene high-throughput sequencing technology and correlation analysis. Our results indicated that the spatial distribution patterns in bacterial communities were significantly different among the six different mangrove sites, as evidenced by NMDS (non-metric multidimensional scaling), ANOSIM (analysis of similarity), and LDA (linear discriminant analysis) analysis. Composition analysis of bacterial communities showed that overall, Chloroflexi (8.3-31.6%), Proteobacteria (13.6-30.1%), Bacteroidota (5.0-24.6%), and Desulfobacterota (3.8-24.0%) were the most abundant bacterial phyla in the mangrove surface sediments. Redundancy analysis (RDA) further highlighted that salinity, δ13C, temperature, δ15N, and silt were the most critical environmental variables influencing the composition of bacterial communities across the whole mangrove samples. Notably, Chloroflexi, one of the most abundant bacterial phyla in the mangrove wetlands, displayed a significantly positive correlation with OC and a negative correlation with δ13C, suggesting its essential role in the degradation of terrestrial-derived organic carbon. These findings support the current understanding of the roles of the bacterial communities and their interactions with environmental factors in diverse mangrove ecosystems.
Collapse
Affiliation(s)
- Ying Liu
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China;
| | - Jinyu Liang
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Jingjing Song
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yue Sun
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Riquan Liao
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Mingzhong Liang
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Hongming Cao
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Xiuhao Chen
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yuxia Wu
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Liting Bei
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yuting Pan
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Baishu Yan
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yunru Li
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yun Tao
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Rongping Bu
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Bin Gong
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| |
Collapse
|
4
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unveiling the bacterial diversity and potential of the Avicennia marina ecosystem for enhancing plant resilience to saline conditions. ENVIRONMENTAL MICROBIOME 2024; 19:101. [PMID: 39633419 PMCID: PMC11619459 DOI: 10.1186/s40793-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Avicennia marina ecosystems are critical for coastal protection, water quality enhancement, and biodiversity support. These unique ecosystems thrive in extreme saline conditions and host a diverse microbiome that significantly contributes to plant resilience and growth. Global food security is increasingly threatened by crop yield losses due to abiotic stresses, including saline soils. Traditional plant breeding for salt tolerance is both costly and time-consuming. This study explores the potential of bacteria from A. marina to enhance plant growth under saline conditions, emphasizing their ecological significance. RESULTS We analyzed the microbiome of A. marina from the Red Sea coast using high-throughput Illumina sequencing and culture-dependent methods across various compartments (bulk soil, rhizosphere, rhizoplane, roots, and leaves). Our findings revealed distinct compartment-specific microbial communities, with Proteobacteria being the dominant phylum. Functional predictions indicated diverse microbial roles in metal uptake and plant growth promotion (PGP). Remarkably, our culture-dependent methods allowed us to recover 56% of the bacterial diversity present in the microbiome, resulting in the isolation and characterization of 256 bacterial strains. These isolates were screened for PGP traits, including salt and heat tolerance, siderophore production, and pectinase activity. Out of the 77 bacterial isolates tested, 11 demonstrated a significant ability to enhance Arabidopsis growth under salt stress. CONCLUSIONS Our study highlights the ecological significance of mangrove microbiomes and the potential of culture collections in offering innovative solutions for ecological restoration and crop production in saline conditions. The unique collection of mangrove bacteria, particularly from the rhizosphere and endophytes, showcases significant PGP traits and stress tolerance capabilities. These findings emphasize the importance of functional traits, such as salt tolerance, in the recruitment of endophytic bacteria by plants over taxonomic affiliation. The identified bacterial strains hold potential not only for developing biofertilizers to improve crop productivity but also for ecological restoration projects aimed at rehabilitating saline-degraded lands, thereby contributing to overall ecosystem health and sustainability.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
He J, Wang W, Liu T, Yan W, Wu X, Lei J, Xu Y, Chen Y, Yao Y, Jiang W, Shen Z, Farooq A. Midseason drying increases soil dissolved organic carbon and rice yield via soil cbbL bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123131. [PMID: 39509987 DOI: 10.1016/j.jenvman.2024.123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
An understanding of how irrigation regimes affect autotrophic microorganisms is essential, as this has direct implications for the soil organic carbon (SOC) content, rice yield and the sustainable agricultural practices. Here, the effects of three irrigation regimes on autotrophic microorganisms, soil active organic carbon fractions, and rice yield were explored. The irrigation regimes were: 1) rainfed (RF), 2) midseason drying (MD), and 3) continuous flooding (CF). The SOC, microbial biomass carbon (MBC), MBC/SOC ratio, dissolved organic carbon (DOC), DOC/SOC ratio, the cbbL (the cbbL gene encodes the large subunit of ribulose-1, 5-bisphosphate carboxylase) bacterial alpha diversity and community composition, and rice yield were assessed under each regime. The highest MBC content (646 mg kg-1 in the early season and 1007 mg kg-1 in the late season) and MBC/SOC ratio (3% in the early season and 5% in the late season) were observed under the RF regime. The soil DOC content and DOC/SOC ratio were the highest in the MD regime, followed by the CF regime. The lowest values were observed under the RF regime, with greater differences observed in the late season. Soil cbbL bacterial alpha diversity was the highest in the MD regime and the lowest in the CF regime. The irrigation regimes altered the composition of the cbbL microbial community, with Burkholderiales and Corynebacteriales exhibiting the highest relative abundances in the MD regime. In the late season, the rice yield in the MD regime was 53% and 14% greater than the RF and CF regimes, respectively. A partial-least-squares path model showed that the optimal regime (MD regime) increased the alpha diversity of the soil cbbL bacteria and the relative abundances of several probiotic microorganisms. This, in turn, increased soil DOC content and its contribution to SOC, eventually increasing the rice yield. These findings clarified the effects of different water management strategies on autotrophic microorganisms, organic carbon, and rice yield, providing guidance for implementing suitable water management practices to enhance soil fertility and rice yield.
Collapse
Affiliation(s)
- Jinsong He
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Forestry, College of Soil and Water Conservation, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Wei Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Ting Liu
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wende Yan
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Forestry, College of Soil and Water Conservation, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Xiaohong Wu
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Advanced Interdisciplinary Studies, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China.
| | - Junjie Lei
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yichen Xu
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yazhen Chen
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yuxin Yao
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wenqiong Jiang
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Zhentao Shen
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Asma Farooq
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
6
|
de Carvalho FM, Laux M, Ciapina LP, Gerber AL, Guimarães APC, Kloh VP, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Finding microbial composition and biological processes as predictive signature to access the ongoing status of mangrove preservation. Int Microbiol 2024; 27:1485-1500. [PMID: 38388811 PMCID: PMC11452435 DOI: 10.1007/s10123-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.
Collapse
Affiliation(s)
- Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Vinícius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| |
Collapse
|
7
|
Cheng X, Li X, Cai Z, Wang Z, Zhou J. The Structural and Functional Responses of Rhizosphere Bacteria to Biodegradable Microplastics in the Presence of Biofertilizers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2627. [PMID: 39339601 PMCID: PMC11434756 DOI: 10.3390/plants13182627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Biodegradable microplastics (Bio-MPs) are a hot topic in soil research due to their potential to replace conventional microplastics. Biofertilizers are viewed as an alternative to inorganic fertilizers in agriculture due to their potential to enhance crop yields and food safety. The use of both can have direct and indirect effects on rhizosphere microorganisms. However, the influence of the coexistence of "Bio-MPs and biofertilizers" on rhizosphere microbial characteristics remains unclear. We investigated the effects of coexisting biofertilizers and Bio-MPs on the structure, function, and especially the carbon metabolic properties of crop rhizosphere bacteria, using a pot experiment in which polyethylene microplastics (PE-MPs) were used as a reference. The results showed that the existence of both microplastics (MPs) changed the physicochemical properties of the rhizosphere soil. Exposure to MPs also remarkably changed the composition and diversity of rhizosphere bacteria. The network was more complex in the Bio-MPs group. Additionally, metagenomic analyses showed that PE-MPs mainly affected microbial vitamin metabolism. Bio-MPs primarily changed the pathways related to carbon metabolism, such as causing declined carbon fixation/degradation and inhibition of methanogenesis. After partial least squares path model (PLS-PM) analysis, we observed that both materials influenced the rhizosphere environment through the bacterial communities and functions. Despite the degradability of Bio-MPs, our findings confirmed that the coexistence of biofertilizers and Bio-MPs affected the fertility of the rhizosphere. Regardless of the type of plastic, its use in soil requires an objective and scientifically grounded approach.
Collapse
Affiliation(s)
- Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinyang Li
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
8
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
9
|
Dai Z, Zhang N, Wang F, Li Y, Peng J, Xiang T, Zhao X, Yang S, Cao W. Loss of microbial functional diversity following Spartina alterniflora invasion reduces the potential of carbon sequestration and nitrogen removal in mangrove sediments-from a gene perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121569. [PMID: 38914045 DOI: 10.1016/j.jenvman.2024.121569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Mangrove ecosystems play an important role in carbon (C) sequestration and nitrogen (N) removal. Although Spartina alterniflora has successively invaded native mangrove habitats during the preceding two decades, the effects of this invasion on the microbial functional potential involved in nutrient cycling remain unclear. In this study, metagenomic sequencing was used to investigate microbial C and N cycling in sediments derived from S. alterniflora and three native mangrove species (Kandelia obovata, Avicennia marina, and Aegiceras corniculatum). Greater differences in functional profiles of C and N cycling-related genes were observed between S. alterniflora and mangrove sediments than between different mangrove sediments. Functional diversity was lower in S. alterniflora sediments than in native mangrove sediments. The growth of Thaumarchaeota and Proteobacteria, was enhanced due to their resilience to diversity loss, while the growth of oligotrophs, such as Chloroflexi and Firmicutes, was inhibited in S. alterniflora sediments. Compared to mangrove sediments, the abundance of genes involved in C fixation and methane production was lower in S. alterniflora sediments. However, S. alterniflora significantly increased the gene abundance of pmo which controlled the oxidation process of CH4 to carbon dioxide. Additionally, genes involved in nitrification were enriched, whereas genes involved in N reduction processes, such as denitrification and dissimilatory nitrate reduction to ammonium, N immobilization, and N mineralization, were depleted in S. alterniflora sediments compared to mangrove sediments. Partial least squares regression models demonstrated that the decrease in soil organic C and increase in pH after S. alterniflora invasion induced the loss of microbial functional diversity, which was the main driver of changes in the abundances of genes involved in C and N cycling. Overall, our findings indicate that S. alterniflora invasion modifies the microbial functional profile of nutrient cycling in native mangrove ecosystems and potentially weakens the capacity of mangroves to sequester carbon and remove nitrogen.
Collapse
Affiliation(s)
- Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ning Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yujie Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tao Xiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyu Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
10
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
11
|
Fiard M, Militon C, Sylvi L, Migeot J, Michaud E, Jézéquel R, Gilbert F, Bihannic I, Devesa J, Dirberg G, Cuny P. Uncovering potential mangrove microbial bioindicators to assess urban and agricultural pressures on Martinique island in the eastern Caribbean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172217. [PMID: 38583633 DOI: 10.1016/j.scitotenv.2024.172217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Jonathan Migeot
- Impact Mer consulting, expertise, and R&D firm, 20 rue Karukéra, 97200 Fort de France, Martinique/FWI, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Ronan Jézéquel
- CEDRE, 715 rue Alain Colas, 29218 Brest CEDEX 2, France.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier, Toulouse, France.
| | | | - Jeremy Devesa
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
12
|
Li S, Delgado-Baquerizo M, Ding J, Hu H, Huang W, Sun Y, Ni H, Kuang Y, Yuan MM, Zhou J, Zhang J, Liang Y. Intrinsic microbial temperature sensitivity and soil organic carbon decomposition in response to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17395. [PMID: 38923190 DOI: 10.1111/gcb.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Soil microbes are essential for regulating carbon stocks under climate change. However, the uncertainty surrounding how microbial temperature responses control carbon losses under warming conditions highlights a significant gap in our climate change models. To address this issue, we conducted a fine-scale analysis of soil organic carbon composition under different temperature gradients and characterized the corresponding microbial growth and physiology across various paddy soils spanning 4000 km in China. Our results showed that warming altered the composition of organic matter, resulting in a reduction in carbohydrates of approximately 0.026% to 0.030% from humid subtropical regions to humid continental regions. These changes were attributed to a decrease in the proportion of cold-preferring bacteria, leading to significant soil carbon losses. Our findings suggest that intrinsic microbial temperature sensitivity plays a crucial role in determining the rate of soil organic carbon decomposition, providing insights into the temperature limitations faced by microbial activities and their impact on soil carbon-climate feedback.
Collapse
Affiliation(s)
- Sen Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Han Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weigen Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yishen Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haowei Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyun Kuang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Jizhong Zhou
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
13
|
Sun D, Huang Y, Wang Z, Tang X, Ye W, Cao H, Shen H. Soil microbial community structure, function and network along a mangrove forest restoration chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169704. [PMID: 38163592 DOI: 10.1016/j.scitotenv.2023.169704] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Mangrove forests have high ecological, social and economic values, but due to environmental changes and human activities, natural mangrove forests have experienced serious degradations and reductions in distribution area worldwide. In the coastal zones of southern China, an introduced mangrove species, Sonneratia apetala, has been extensively used for mangrove restoration because of its rapid growth and strong environmental adaptability. However, little is known about how soil microorganisms vary with the restoration stages of the afforested mangrove forests. Here, we examined the changes in soil physicochemical properties and microbial biomass, community structure and function, and network in three afforested S. apetala forests with restoration time of 7, 12, and 18 years and compared them with a bare flat and a 60-year-old natural Kandelia obovata forest in a mangrove nature reserve. Our results showed that the contents of soil salinity, organic carbon, total nitrogen, ammonium nitrogen, and microbial biomass increased, while soil pH and bacterial alpha diversity decreased with afforestation age. Soil microbial community structure was significantly affected by soil salinity, organic carbon, pH, total nitrogen, ammonium nitrogen, available phosphorus, and available kalium, and susceptibility to environmental factors was more pronounced in bacterial than fungal community structure. The relative abundances of aerobic chemoheterotrophy were significantly higher in 12- and 18-year-old S. apetala than in K. obovata forest, while that of sulfate-reducing bacteria showed a decreasing trend with afforestation age. The abundance of dung saprotroph was significantly higher in 12- and 18-year-old S. apetala forests than in the natural forest. With the increasing afforestation age, the modularity of microbial networks increased, while stability and robustness decreased. Our results suggest that planting S. apetala contributes to improving soil fertility and microbial biomass but may make soil microbial networks more vulnerable.
Collapse
Affiliation(s)
- Dangge Sun
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyi Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangming Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Li X, Cheng X, Cheng K, Cai Z, Feng S, Zhou J. The influence of tide-brought nutrients on microbial carbon metabolic profiles of mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167732. [PMID: 37827311 DOI: 10.1016/j.scitotenv.2023.167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Mangrove ecosystems in the intertidal zone are continually affected by tidal inundation, but the impact of tidal-driven nutrient inputs upon bacterial communities and carbon metabolic features in mangrove surface sediments remains underexplored, and the differences in such impacts across backgrounds are not known. Here, two mangrove habitats with contrasting nutrient backgrounds in Shenzhen Bay and Daya Bay in Shenzhen City, China, respectively, were studied to investigate the effects of varying tidal nutrient inputs (especially dissolved inorganic nitrogen and PO43--P) on bacterial community composition and functioning in sediment via field sampling, 16S rDNA amplicon sequencing, and the quantitative potential of microbial element cycling. Results showed that tidal input increased Shenzhen Bay mangrove's eutrophication level whereas it maintained the Daya Bay mangrove's relatively oligotrophic status. Dissolved inorganic nitrogen and PO43--P levels in Shenzhen Bay were respectively 12.6-39.6 and 7.3-29.1 times higher than those in Daya Bay (p < 0.05). In terms of microbial features, Desulfobacteraceae was the dominant family in Shenzhen Bay, while the Anaerolineaceae family dominated in Daya Bay. Co-occurrence network analysis revealed more interconnected and complex microbial networks in Shenzhen Bay. The quantitative gene-chip analysis uncovered more carbon-related functional genes (including carbon degradation and fixation) enriched in Shenzhen Bay's sediment microbial communities than Daya Bay's. Partial least squares path modeling indicated that tidal behavior directly affected mangrove sediments' physicochemical characteristics, with cascading effects shaping microbial diversity and C-cycling function. Altogether, these findings demonstrate that how tides influence the microbial carbon cycle in mangrove sediments is co-correlated with the concentration of nutrient inputs and background status of sediment. This work offers an insightful lens for better understanding bacterial community structure and carbon metabolic features in mangrove sediments under their tidal influences. It provides a theoretical basis to better evaluate and protect mangroves in the context of global change.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450056, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
Sun F, Wang Y, Wang Y, Sun C, Cheng H, Wu M. Insights into the spatial distributions of bacteria, archaea, ammonia-oxidizing bacteria and archaea communities in sediments of Daya Bay, northern South China Sea. MARINE POLLUTION BULLETIN 2024; 198:115850. [PMID: 38029671 DOI: 10.1016/j.marpolbul.2023.115850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Microbe plays an important role in the biogeochemical cycles of the coastal waters. However, comprehensive information about the microbe in the gulf waters is lacking. This study employed high-throughput sequencing and quantitative PCR (qPCR) to investigate the distribution patterns of bacterial, archaeal, ammonia-oxidizing bacterial (AOB), and archaeal (AOA) communities in Daya Bay. Community compositions and principal coordinates analysis (PCoA) exhibited significant spatial characteristics in the diversity and distributions of bacteria, archaea, AOB, and AOA. Notably, various microbial taxa (bacterial, archaeal, AOB, and AOA) exhibited significant differences in different regions, playing crucial roles in nitrogen, sulfur metabolism, and organic carbon mineralization. Canonical correlation analysis (CCA) or redundancy analysis (RDA) indicated that environmental parameters such as temperature, salinity, nitrate, total nitrogen, silicate, and phosphate strongly influenced the distributions of bacterial, archaeal, AOB, and AOA. This study deepens the understanding of the composition and ecological function of prokaryotes in the bay.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Yutu Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Meilin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
16
|
Liu YD, Yuan G, An YT, Zhu ZR, Li G. Molecular cloning and characterization of a novel bifunctional cellobiohydrolase/β-xylosidase from a metagenomic library of mangrove soil. Enzyme Microb Technol 2023; 162:110141. [DOI: 10.1016/j.enzmictec.2022.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
17
|
Cheng H, Mai Z, Wang Y, Liu D, Sun Y. Role of extracellular polymeric substances in metal sequestration during mangrove restoration. CHEMOSPHERE 2022; 306:135550. [PMID: 35780989 DOI: 10.1016/j.chemosphere.2022.135550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Extracellular polymeric substances (EPS) are widely observed in aquatic ecosystems, however the potential function of EPS on metal sequestration in mangrove wetlands is unclear. Thus, an ecological restoration area (including Sonneratia apetala, Kandelia obovata and unvegetated mudflat) was employed to assess the effect of mangrove reforestation on metal sequestration and the underlying roles played by EPS. The results showed that mangrove restoration directly promoted metal accumulation (e.g., Cr, Cu, Ni, Pb, and Zn) in sediments. However, alleviated metal bioavailability was detected after mangrove reforestation. The changes in metal accumulation and bioavailability were highly correlated with EPS and microbial composition. Mangrove restoration (especially for K. obovata reforestation) also significantly promoted EPS production, in which multiple metal-chelating functional groups (e.g., hydroxyl, carboxyl, and imino) were identified by Fourier infrared spectra. Moreover, the contents of EPS were positively correlated with metal accumulation but negatively correlated with metal bioavailability. The present data further illustrated that the enhancements of Gammaproteobacteria, Bacteroidia, Desulfobulbia, and Desulfobacteria might be important for EPS production. In summary, this is the first study to reveal that the presence of artificial mangroves might act as an efficient barrier in metal sequestration and immobilization by enhancing inherent microbial EPS.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China.
| | - Zhimao Mai
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
| | - Dongxi Liu
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingting Sun
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|