1
|
Liu J, Wan Q, Gaoxin D, Song Z, Mao K, Wu F, Liu X, Mu L. Hemolysin III drives neuroinvasion and meningitis while impacting desiccation resilience in Cronobacter sakazakii. Appl Environ Microbiol 2025; 91:e0033925. [PMID: 40042275 PMCID: PMC12016541 DOI: 10.1128/aem.00339-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/26/2025] Open
Abstract
Cronobacter sakazakii is an emerging pathogen associated with severe neonatal diseases, including meningitis. Its ability to cross the blood-brain barrier (BBB) is critical for meningitis development, yet the underlying mechanisms remain unclear. This study investigates the role of Hemolysin III (Hly III), encoded by the ESA_00432, in neuroinvasion and environmental resilience. A markerless deletion of ESA_00432 (ΔESA_00432) revealed that the mutant exhibited unaltered biofilm formation, increased hydrophilicity, and enhanced desiccation resistance compared to the wild type, suggesting that Hly III imposes a fitness cost on C. sakazakii under non-invasive conditions. In a rat infection model, the ΔESA_00432 strain demonstrated significantly reduced brain colonization without affecting bacterial loads in blood, liver, or spleen, underscoring the specific importance of Hly III in neuroinvasion. Cellular assays further revealed that, although the mutant maintained similar levels of adherence and invasion in Caco-2 cells and comparable adhesion to human brain microvascular endothelial cells (HBMECs) as the wild type, its ability to invade HBMECs was markedly diminished. These results suggest that Hly III is crucial for efficient neuroinvasion and BBB translocation while imposing a trade-off on environmental resilience, providing insights into the balance between virulence, and environmental adaptability in C. sakazakii. IMPORTANCE The ability of Cronobacter sakazakii to cause severe neonatal infections, particularly meningitis, presents a significant public health concern, yet the molecular mechanisms that enable its neuroinvasion remain poorly understood. In this study, we identify Hemolysin III (Hly III), encoded by the ESA_00432 gene, as a key factor in the bacterium's ability to cross the blood-brain barrier (BBB) and initiate meningitis. Our findings demonstrate that Hly III is essential for efficient invasion of human brain microvascular endothelial cells (HBMECs) and subsequent brain colonization in a rat model, underscoring its critical role in neurotropism. Furthermore, we show that the absence of Hly III results in enhanced environmental resilience, as indicated by increased desiccation resistance and hydrophilicity. This metabolic trade-off between virulence and environmental adaptability reveals a novel aspect of C. sakazakii's pathogenesis and survival strategies. These insights open new avenues for developing targeted interventions to prevent neonatal meningitis and enhance food safety measures against this opportunistic pathogen.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Qianquan Wan
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Daizong Gaoxin
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhanhui Song
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ke Mao
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Fengzhu Wu
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Xiangyu Liu
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Linsen Mu
- Department of No.9 Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| |
Collapse
|
2
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Cao Y, Ren J, Zhang Y, Xie Y, Xiao X, Zhang Z, Lou W, Liu F. Transcriptomics analysis of the role of SdiA in desiccation tolerance of Cronobacter sakazakii in powdered infant formula. Int J Food Microbiol 2025; 426:110916. [PMID: 39288568 DOI: 10.1016/j.ijfoodmicro.2024.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The quorum-sensing receptor SdiA is vital for regulating the desiccation tolerance of C. sakazakii, yet the specific mechanism remains elusive. Herein, transcriptomics and phenotypic analysis were employed to explore the response of C. sakazakii wild type (WT) and sdiA knockout strain (ΔsdiA) under drying conditions. Following 20 days of drying in powdered infant formula (PIF), WT exhibited 4 log CFU/g higher survival rates compared to ΔsdiA. Transcriptome revealed similar expression patterns between csrA and sdiA, their interaction was confirmed both by protein-protein interaction analysis and yeast two-hybrid assays. Notably, genes associated with flagellar assembly and chemotaxis (flg, fli, che, mot regulon) showed significantly higher expression levels in WT than in ΔsdiA, indicating a reduced capacity for flagellar synthesis in ΔsdiA, which was consistent with cellular morphology observations. Similarly, genes involved in trehalose biosynthesis (ostAB, treYZS) and uptake (thuEFGK) exhibited similar expression patterns to sdiA, with higher levels of trehalose accumulation observed in WT under desiccation conditions compared to ΔsdiA. Furthermore, WT demonstrated enhanced protein and DNA synthesis capabilities under desiccation stress. Higher expression levels of genes related to oxidative phosphorylation were also noted in WT, ensuring efficient cellular ATP synthesis. This study offers valuable insights into how SdiA influences the desiccation tolerance of C. sakazakii, paving the way for targeted strategies to inhibit and control this bacterium.
Collapse
Affiliation(s)
- Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Jiahao Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yan Zhang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guizhou City, Guiyang Province 550025, China
| | - Yijia Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Ziqiang Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Fengsong Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Hu B, Wang J, Li L, Wang Q, Qin J, Chi Y, Yan J, Sun W, Cao B, Guo X. Functional Identification and Genetic Analysis of O-Antigen Gene Clusters of Food-Borne Pathogen Yersinia enterocolitica O:10 and Other Uncommon Serotypes, Further Revealing Their Virulence Profiles. J Microbiol Biotechnol 2024; 34:1599-1608. [PMID: 39081257 PMCID: PMC11380512 DOI: 10.4014/jmb.2402.02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Linxing Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Qin Wang
- Disease Prevention and Control Center of Ganzhou District, 27 Xianfu Street, Ganzhou District, Zhangye City, Gansu Province, P.R. China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Yingxin Chi
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Wenkui Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| |
Collapse
|
5
|
Yuan L, Dai H, He G, Yang Z, Jiao X. Invited review: Current perspectives for analyzing the dairy biofilms by integrated multiomics. J Dairy Sci 2023; 106:8181-8192. [PMID: 37641326 DOI: 10.3168/jds.2023-23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Biofilms formed by pathogenic or spoilage microorganisms have become serious issues in the dairy industry, as this mode of life renders such microorganisms highly resistant to cleaning-in-place (CIP) procedures, disinfectants, desiccation, and other control strategies. The advent of omics techniques, especially the integration of different omics tools, has greatly improved our understanding of the features of microbial biofilms, and provided in-depth knowledge on developing effective methods that are directly against deleterious biofilms. This review provides novel insights into the single use of each omics tool and the application of multiomics tools to unravel the mechanisms of biofilm formation, specific molecular phenotypes exhibited by biofilms, and biofilm control strategies. Challenges and future perspective on the integration of omics tools for biofilm studies are also addressed.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| |
Collapse
|
6
|
Davies CP, Jurkiw T, Haendiges J, Reed E, Anderson N, Grasso-Kelley E, Hoffmann M, Zheng J. Changes in the genomes and methylomes of three Salmonella enterica serovars after long-term storage in ground black pepper. Front Microbiol 2022; 13:970135. [PMID: 36160197 PMCID: PMC9507087 DOI: 10.3389/fmicb.2022.970135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Low moisture foods (LMFs) have traditionally been recognized as safe for consumption, as most bacteria require higher water content to grow. However, outbreaks due to LMF foods are increasing, and the microbial pathogen Salmonella enterica is frequently implicated. S. enterica can survive in LMFs for years, but few serovars have been studied, and the mechanisms which underlie this longevity are not well understood. Here, we determine that S. enterica serovars S. Tennessee, S. Anatum, and S. Reading but not S. Oranienburg can survive in the ground black pepper for 6 years. S. Reading was not previously associated with any LMF. Using both Illumina and Pacific Biosciences sequencing technologies, we also document changes in the genomes and methylomes of the surviving serovars over this 6-year period. The three serovars acquired a small number of single nucleotide polymorphisms (SNPs) including seven substitutions (four synonymous, two non-synonymous, and one substitution in a non-coding region), and two insertion-deletions. Nine distinct N6-methyladenine (m6A) methylated motifs across the three serovars were identified including five which were previously known, Gm6ATC, CAGm6AG, BATGCm6AT, CRTm6AYN6CTC, and CCm6AN7TGAG, and four novel serovar-specific motifs, GRTm6AN8TTYG, GAm6ACN7GTA, GAA m6ACY, and CAAm6ANCC. Interestingly, the BATGCAT motif was incompletely methylated (35–64% sites across the genome methylated), suggesting a possible role in gene regulation. Furthermore, the number of methylated BATGCm6AT motifs increased after storage in ground black pepper for 6 years from 475 to 657 (S. Tennessee), 366 to 608 (S. Anatum), and 525 to 570 (S. Reading), thus warranting further study as an adaptive mechanism. This is the first long-term assessment of genomic changes in S. enterica in a low moisture environment, and the first study to examine the methylome of any bacteria over a period of years, to our knowledge. These data contribute to our understanding of S. enterica survival in LMFs, and coupled with further studies, will provide the information necessary to design effective interventions which reduce S. enterica in LMFs and maintain a healthy, safe food supply.
Collapse
Affiliation(s)
- Cary P. Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, U.S. Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Cary P. Davies,
| | - Thomas Jurkiw
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Nathan Anderson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Elizabeth Grasso-Kelley
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|