1
|
Xu Y, Liu Y, Chen T, Wang S, Liu G, Zhang G, Zhang W, Wu M, Chen X, Zhang B. Role of Cyanobacteria in the assembly and dynamics of microbial communities on glacier surfaces. iScience 2025; 28:112061. [PMID: 40104071 PMCID: PMC11915163 DOI: 10.1016/j.isci.2025.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/21/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
Glacier surface habitats are dynamic ecosystems that respond to local climatic and thermal changes, although the assembly mechanisms of microbial communities in these environments remain unclear. This study examined microbial communities on the surface of Baishui Glacier No. 1 across the accumulation, the intense melt, and the late melt periods. The absolute abundance of Cyanobacteria increased significantly, becoming the most abundant phylum by the end of the melt period. Cyanobacteria were strongly associated with other local microorganisms, especially in community structure, community assembly, and co-occurrence networks. The correlations between Cyanobacteria and other microorganisms shifted from predominantly mutualistic interactions, to being predominantly competitive interactions, and finally to mutualistic interactions with a portion of the community. Additionally, Cyanobacteria abundance positively correlated with nitrogen metabolism multifunctionality in other microorganisms, indicating a potential link between Cyanobacteria and nitrogen cycling. These findings provide new insights into microbial community dynamics and survival strategies on glacier surfaces.
Collapse
Affiliation(s)
- Yeteng Xu
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
| | - Yang Liu
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shijin Wang
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Minghui Wu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
2
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|