1
|
Liu Y, Ma X, Pei J, Yang D, Li Y, Zhu X, Wu Z. Epidemiological and spatial analysis of newly diagnosed HIV-1/AIDS patients before antiretroviral therapy in Ningxia from 2020 to 2021. PLoS One 2025; 20:e0322389. [PMID: 40261893 PMCID: PMC12013917 DOI: 10.1371/journal.pone.0322389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
The high mutability of human immunodeficiency virus type 1 (HIV-1) and the widespread use of antiretroviral drugs have rendered genetic diversity and pre-treatment drug resistance (PDR) significant obstacles to the success of antiretroviral therapy (ART). However, the research on the epidemiological and spatial distribution characteristics of PDR in Ningxia is still insufficient. A cross-sectional study utilized pre-treatment blood samples collected between 2020 and 2021 from the biorepository in May 2024. Partial pol gene sequences were obtained through plasma collection and RNA extraction. Drug resistance analysis was performed using the Stanford University HIVdb algorithm. Molecular network were constructed using Cytoscape 3.10.0. Spatial analysis and visualization were further conducted using ArcGIS10.8.1. 95 sequences were obtained, among which 7 HIV-1 genotypes were detected and CRF07_BC (67.37%, 64/95) was the predominant one. Drug resistance mutations (DRMs) were detected in 13.68%(13/95) of the sequences. The risk of PDR occurrence was higher among individuals with CRF07_BC strain types. The 24 sequences of CRF07_BC, CRF01_AE, and URF subtypes grouped into nine transmission clusters in the molecular network, with CRF07_BC showing the highest integration and clustering rates. HIV-1 infections resistant to PDR were observed in all five cities in NHAR, accompanied by cross-city transmission. Additionally, seven imported sequences were detected, comprising CRF07_BC, CRF01_AE, and C subtypes, along with three sequences of CRF55_01B with high similarity to nonlocal sequences. From 2020 to 2021, the HIV-1 diversity increased significantly in NHAR, with the prevalence of PDR reaching moderate levels and evidence of resistance transmission. The districts and counties under the jurisdiction of Yinchuan City emerged as hotspots for both pre-treatment HIV/AIDS patients and the distribution of resistant strains. It is imperative to enhance PDR testing and implement targeted interventions in key areas to minimize the emergence and dissemination of resistant virus variants.
Collapse
Affiliation(s)
- Yichang Liu
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Hui Autonomous Region Centers for Disease Control and Prevention, Yinchuan, China
| | - Xiaofa Ma
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Jianxin Pei
- Ningxia Hui Autonomous Region Centers for Disease Control and Prevention, Yinchuan, China
| | - Dongzhi Yang
- Ningxia Hui Autonomous Region Centers for Disease Control and Prevention, Yinchuan, China
| | - Yufeng Li
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xiaohong Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Zhonglan Wu
- Ningxia Hui Autonomous Region Centers for Disease Control and Prevention, Yinchuan, China
| |
Collapse
|
2
|
Peng T, Tang J, Qiu M, Lai Z, Xin J, Liang S, Zhou C, Deng J, Zhang Y, Zeng Y, Su L, Yang X. Characterization of the HIV-1 molecular network in a middle-aged population aged 50 years and older in a City in Southern Sichuan, China. Sci Rep 2025; 15:10500. [PMID: 40140708 PMCID: PMC11947237 DOI: 10.1038/s41598-025-95660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/24/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to investigate the characteristics of the HIV-1 molecular network among newly diagnosed HIV-infected patients in southern Sichuan City. Plasma samples will be collected from eligible study subjects (n = 1249) during a cross-sectional survey conducted between 2016 and 2020. The HIV-1 polymerase (pol) gene sequences obtained from the collected samples will be used to perform phylogenetic analysis and characterize the genetic subtypes' molecular transmission networks. HIV-1 pol region sequences were successfully amplified in 898 cases, and seven genotypes were obtained, with CRF01_AE (331, 36.86%) and CRF07_BC (368, 40.98%) subtypes as the predominant prevalent strains in the region. 601 sequences entered the molecular transmission network. There were 302 highly connected individuals. Further multivariate analysis showed that the older the age (60-69 years, OR = 1.595, 95% CI: 1.026-2.479; ≥70 years, OR = 2.189, 95% CI: 1.295-3.699), RX and GJ counties (OR = 4.654, 95% CI: 2.776-7.803; OR = 6.847, 95% CI: 3.464-13.533) and CRF08_BC subtype (OR = 2.031, 95% CI: 1.225-3.367) were both more likely to be highly connected individuals. To effectively combat this local HIV-1 epidemic, HIV prevention and intervention programs should target older adults at least 60 years of age and registered residents in districts and counties within RX and GJ.
Collapse
Affiliation(s)
- Tingchun Peng
- School of Public Health, Chengdu Medical College, Chengdu, China
- Yibing Center for Disease Control and Prevention, Yibing, China
| | - Jiayang Tang
- School of Public Health, Chengdu Medical College, Chengdu, China
- Hospital-Acquired Infection Control Department, Sichuan Cancer Hospital, Chengdu, China
| | - Miaomiao Qiu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Zhen Lai
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Junguo Xin
- School of Public Health, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Intelligent Medical Care and Elderly Health Management, Chengdu, China
| | - Shu Liang
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Chang Zhou
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Jianping Deng
- Inspection department, Zigong Center for Disease Control and Prevention, Zigong, China
| | - Ying Zhang
- Inspection department, Zigong Center for Disease Control and Prevention, Zigong, China
| | - Yali Zeng
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Ling Su
- Center for AIDS/STD Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, China.
| | - Xiaohong Yang
- School of Public Health, Chengdu Medical College, Chengdu, China.
- Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Intelligent Medical Care and Elderly Health Management, Chengdu, China.
| |
Collapse
|
3
|
Zhu M, Sun Z, Zhang X, Luo W, Wu S, Ye L, Xu K, Chen J. Epidemiological dynamics and molecular characterization of HIV drug resistance in eastern China from 2020 to 2023. Front Microbiol 2024; 15:1475548. [PMID: 39493858 PMCID: PMC11529039 DOI: 10.3389/fmicb.2024.1475548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Objective HIV drug resistance (HIVDR) has become a threat to the elimination of the AIDS epidemic due to the global scale-up of antiretroviral therapy (ART) for HIV-infected individuals. This study aims to investigate the epidemiological dynamics and molecular characterization of HIV pretreatment drug resistance (PDR) and acquired drug resistance (ADR) in Hangzhou, a developed region in China. Methods An epidemiological survey combined with a molecular transmission network and Bayesian analysis was conducted. A total of 3,596 individuals with newly confirmed HIV infections (from 2020 to 2023) and 164 individuals with ART failure (from 2021 to 2023) were included. The molecular transmission network was used to identify key drug-resistant transmission clusters, while the Bayesian analysis was utilized to trace the origins and spread of these clusters. Results The overall prevalence of PDR was found to be 8.4% (303/3596). Among these cases, PDR to non-nucleoside reverse transcriptase inhibitors (NNRTIs) accounted for 4.7% (170/3596), significantly higher than the resistance observed for protease inhibitors (PIs; 2.8%, p < 0.001) and nucleoside reverse transcriptase inhibitors (NRTIs; 1.4%, p < 0.001). Multivariate logistic regression analysis revealed a significantly higher PDR value among individuals infected with the CRF07_BC subtype compared to those with the CRF08_BC subtype (aOR = 0.56, 95% CI = 0.359-0.859, p = 0.008). The molecular transmission network analysis identified the transmission of the drug resistance mutation (DRM) Q58E within the clusters of the CRF07_BC subtype. The Bayesian analysis suggested that these clusters were introduced into Hangzhou from Shenzhen between 2005 and 2012. Furthermore, the study highlighted 50.6% (83/164) prevalence of ADR among individuals experiencing ART failure. The combined molecular network analysis of virological failure and newly confirmed HIV infections indicated the transmission of the K103N mutation between these groups. Conclusion In conclusion, targeted interventions may be necessary for specific subtypes and transmission clusters to control the spread of drug-resistant HIV. Continuous monitoring of resistance patterns is critical to inform treatment strategies and optimize ART regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Xu
- Department of HIV/AIDS Control and Prevention, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, China
| | - Junfang Chen
- Department of HIV/AIDS Control and Prevention, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, China
| |
Collapse
|
4
|
Rashid A, Kang L, Yi F, Chu Q, Shah SA, Mahmood SF, Getaneh Y, Wei M, Chang S, Abidi SH, Shao Y. Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan. Viruses 2024; 16:962. [PMID: 38932254 PMCID: PMC11209141 DOI: 10.3390/v16060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The human immunodeficiency virus type-1 epidemic in Pakistan has significantly increased over the last two decades. In Karachi, Pakistan, there is a lack of updated information on the complexity of HIV-1 genetic diversity and the burden of drug resistance mutations (DRMs) that can contribute to ART failure and poor treatment outcomes. This study aimed to determine HIV-1 genetic diversity and identify drug-resistance mutations among people living with HIV in Karachi. A total of 364 HIV-positive individuals, with a median age of 36 years, were enrolled in the study. The HIV-1 partial pol gene was successfully sequenced from 268 individuals. The sequences were used to generate phylogenetic trees to determine clade diversity and also to assess the burden of DRMs. Based on the partial pol sequences, 13 distinct HIV-1 subtypes and recombinant forms were identified. Subtype A1 was the most common clade (40%), followed by CRF02_AG (33.2%). Acquired DRMs were found in 30.6% of the ART-experienced patients, of whom 70.7%, 20.7%, and 8.5% were associated with resistance to NNRTIs, NRTIs, and PIs, respectively. Transmitted DRMs were found in 5.6% of the ART-naïve patients, of whom 93% were associated with resistance against NNRTIs and 7% to PIs. The high prevalence of DRMs in ART-experienced patients poses significant challenges to the long-term benefits and sustainability of the ART program. This study emphasizes the importance of continuous HIV molecular epidemiology and drug resistance surveillance to support evidence-based HIV prevention, precise ART, and targeted AIDS care.
Collapse
Affiliation(s)
- Abdur Rashid
- School of Medicine, Nankai University, Tianjin 300071, China; (A.R.); (M.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
| | - Li Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Yi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
| | - Qingfei Chu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | | | | | - Yimam Getaneh
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
- Ethiopian Public Health Institute, Addis Ababa P.O. Box 1242, Ethiopia
| | - Min Wei
- School of Medicine, Nankai University, Tianjin 300071, China; (A.R.); (M.W.)
| | - Song Chang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin 300071, China; (A.R.); (M.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| |
Collapse
|
5
|
Shi H, Li X, Wang S, Dong X, Qiao M, Wu S, Wu R, Yuan X, Wang J, Xu Y, Zhu Z. Molecular transmission network analysis of newly diagnosed HIV-1 infections in Nanjing from 2019 to 2021. BMC Infect Dis 2024; 24:583. [PMID: 38867161 PMCID: PMC11170874 DOI: 10.1186/s12879-024-09337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/21/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVE The objective of this study was to conduct a comprehensive analysis of the molecular transmission networks and transmitted drug resistance (TDR) patterns among individuals newly diagnosed with HIV-1 in Nanjing. METHODS Plasma samples were collected from newly diagnosed HIV patients in Nanjing between 2019 and 2021. The HIV pol gene was amplified, and the resulting sequences were utilized for determining TDR, identifying viral subtypes, and constructing molecular transmission network. Logistic regression analyses were employed to investigate the epidemiological characteristics associated with molecular transmission clusters. RESULTS A total of 1161 HIV pol sequences were successfully extracted from newly diagnosed individuals, each accompanied by reliable epidemiologic information. The analysis revealed the presence of multiple HIV-1 subtypes, with CRF 07_BC (40.57%) and CRF01_AE (38.42%) being the most prevalent. Additionally, six other subtypes and unique recombinant forms (URFs) were identified. The prevalence of TDR among the newly diagnosed cases was 7.84% during the study period. Employing a genetic distance threshold of 1.50%, the construction of the molecular transmission network resulted in the identification of 137 clusters, encompassing 613 nodes, which accounted for approximately 52.80% of the cases. Multivariate analysis indicated that individuals within these clusters were more likely to be aged ≥ 60, unemployed, baseline CD4 cell count ≥ 200 cells/mm3, and infected with the CRF119_0107 (P < 0.05). Furthermore, the analysis of larger clusters revealed that individuals aged ≥ 60, peasants, those without TDR, and individuals infected with the CRF119_0107 were more likely to be part of these clusters. CONCLUSIONS This study revealed the high risk of local HIV transmission and high TDR prevalence in Nanjing, especially the rapid spread of CRF119_0107. It is crucial to implement targeted interventions for the molecular transmission clusters identified in this study to effectively control the HIV epidemic.
Collapse
Affiliation(s)
- Hongjie Shi
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Xin Li
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Sainan Wang
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Dong
- Department of Microbiology Laboratory, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Mengkai Qiao
- Department of Microbiology Laboratory, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Sushu Wu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Rong Wu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Xin Yuan
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Jingwen Wang
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Yuanyuan Xu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China.
| | - Zhengping Zhu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China.
| |
Collapse
|
6
|
He Y, Tang Y, Hua Q, Li X, Ge Y, Liu Y, Tang R, Tian Y, Li W. Exploring Dynamic Changes in HIV-1 Molecular Transmission Networks and Key Influencing Factors: Cross-Sectional Study. JMIR Public Health Surveill 2024; 10:e56593. [PMID: 38810253 PMCID: PMC11170051 DOI: 10.2196/56593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The HIV-1 molecular network is an innovative tool, using gene sequences to understand transmission attributes and complementing social and sexual network studies. While previous research focused on static network characteristics, recent studies' emphasis on dynamic features enhances our understanding of real-time changes, offering insights for targeted interventions and efficient allocation of public health resources. OBJECTIVE This study aims to identify the dynamic changes occurring in HIV-1 molecular transmission networks and analyze the primary influencing factors driving the dynamics of HIV-1 molecular networks. METHODS We analyzed and compared the dynamic changes in the molecular network over a specific time period between the baseline and observed end point. The primary factors influencing the dynamic changes in the HIV-1 molecular network were identified through univariate analysis and multivariate analysis. RESULTS A total of 955 HIV-1 polymerase fragments were successfully amplified from 1013 specimens; CRF01_AE and CRF07_BC were the predominant subtypes, accounting for 40.8% (n=390) and 33.6% (n=321) of the specimens, respectively. Through the analysis and comparison of the basic and terminal molecular networks, it was discovered that 144 sequences constituted static molecular networks, and 487 sequences contributed to the formation of dynamic molecular networks. The findings of the multivariate analysis indicated that the factors occupation as a student, floating population, Han ethnicity, engagement in occasional or multiple sexual partnerships, participation in anal sex, and being single were independent risk factors for the dynamic changes observed in the HIV-1 molecular network, and the odds ratio (OR; 95% CIs) values were 2.63 (1.54-4.47), 1.83 (1.17-2.84), 2.91 (1.09-7.79), 1.75 (1.06-2.90), 4.12 (2.48-6.87), 5.58 (2.43-12.80), and 2.10 (1.25-3.54), respectively. Heterosexuality and homosexuality seem to exhibit protective effects when compared to bisexuality, with OR values of 0.12 (95% CI 0.05-0.32) and 0.26 (95% CI 0.11-0.64), respectively. Additionally, the National Eight-Item score and sex education experience were also identified as protective factors against dynamic changes in the HIV-1 molecular network, with OR values of 0.12 (95% CI 0.05-0.32) and 0.26 (95% CI 0.11-0.64), respectively. CONCLUSIONS The HIV-1 molecular network analysis showed 144 sequences in static networks and 487 in dynamic networks. Multivariate analysis revealed that occupation as a student, floating population, Han ethnicity, and risky sexual behavior were independent risk factors for dynamic changes, while heterosexuality and homosexuality were protective compared to bisexuality. A higher National Eight-Item score and sex education experience were also protective factors. The identification of HIV dynamic molecular networks has provided valuable insights into the characteristics of individuals undergoing dynamic alterations. These findings contribute to a better understanding of HIV-1 transmission dynamics and could inform targeted prevention strategies.
Collapse
Affiliation(s)
- Yan He
- Department of Infection Management, Nanjing Drum Tower Hospital, Nanjing, China
| | - Ying Tang
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Hua
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Li
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - You Ge
- School of Public Health, Southeast University, Nanjing, China
| | - Yangyang Liu
- School of Public Health, Southeast University, Nanjing, China
| | - Rong Tang
- Nanjing Qixia District Center for Disease Control and Prevention, Nanjing, China
| | - Ye Tian
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Hu L, Zhao B, Liu M, Gao Y, Ding H, Hu Q, An M, Shang H, Han X. Optimization of genetic distance threshold for inferring the CRF01_AE molecular network based on next-generation sequencing. Front Cell Infect Microbiol 2024; 14:1388059. [PMID: 38846352 PMCID: PMC11155296 DOI: 10.3389/fcimb.2024.1388059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction HIV molecular network based on genetic distance (GD) has been extensively utilized. However, the GD threshold for the non-B subtype differs from that of subtype B. This study aimed to optimize the GD threshold for inferring the CRF01_AE molecular network. Methods Next-generation sequencing data of partial CRF01_AE pol sequences were obtained for 59 samples from 12 transmission pairs enrolled from a high-risk cohort during 2009 and 2014. The paired GD was calculated using the Tamura-Nei 93 model to infer a GD threshold range for HIV molecular networks. Results 2,019 CRF01_AE pol sequences and information on recent HIV infection (RHI) from newly diagnosed individuals in Shenyang from 2016 to 2019 were collected to construct molecular networks to assess the ability of the inferred GD thresholds to predict recent transmission events. When HIV transmission occurs within a span of 1-4 years, the mean paired GD between the sequences of the donor and recipient within the same transmission pair were as follow: 0.008, 0.011, 0.013, and 0.023 substitutions/site. Using these four GD thresholds, it was found that 98.9%, 96.0%, 88.2%, and 40.4% of all randomly paired GD values from 12 transmission pairs were correctly identified as originating from the same transmission pairs. In the real world, as the GD threshold increased from 0.001 to 0.02 substitutions/site, the proportion of RHI within the molecular network gradually increased from 16.6% to 92.3%. Meanwhile, the proportion of links with RHI gradually decreased from 87.0% to 48.2%. The two curves intersected at a GD of 0.008 substitutions/site. Discussion A suitable range of GD thresholds, 0.008-0.013 substitutions/site, was identified to infer the CRF01_AE molecular transmission network and identify HIV transmission events that occurred within the past three years. This finding provides valuable data for selecting an appropriate GD thresholds in constructing molecular networks for non-B subtypes.
Collapse
Affiliation(s)
- Lijuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bin Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Mingchen Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yang Gao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qinghai Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Minghui An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- National Health Commission (NHC) Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
8
|
Mokgethi PT, Choga WT, Maruapula D, Moraka NO, Seatla KK, Bareng OT, Ditshwanelo DD, Mulenga G, Mohammed T, Kaumba PM, Chihungwa M, Marukutira T, Moyo S, Koofhethile CK, Dickinson D, Mpoloka SW, Gaseitsiwe S. High prevalence of pre-treatment and acquired HIV-1 drug resistance mutations among non-citizens living with HIV in Botswana. Front Microbiol 2024; 15:1338191. [PMID: 38476948 PMCID: PMC10929613 DOI: 10.3389/fmicb.2024.1338191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Background Approximately 30,000 non-citizens are living with HIV in Botswana, all of whom as of 2020 are eligible to receive free antiretroviral treatment (ART) within the country. We assessed the prevalence of HIV-1 mutational profiles [pre-treatment drug resistance (PDR) and acquired drug resistance (ADR)] among treatment-experienced (TE) and treatment-naïve (TN) non-citizens living with HIV in Botswana. Methods A total of 152 non-citizens living with HIV were enrolled from a migrant HIV clinic at Independence Surgery, a private practice in Botswana from 2019-2021. Viral RNA isolated from plasma samples were genotyped for HIV drug resistance (HIVDR) using Sanger sequencing. Major known HIV drug resistance mutations (DRMs) in the pol region were determined using the Stanford HIV Drug Resistance Database. The proportions of HIV DRMs amongst TE and TN non-citizens were estimated with 95% confidence intervals (95% CI) and compared between the two groups. Results A total of 60/152 (39.5%) participants had a detectable viral load (VL) >40 copies/mL and these were included in the subsequent analyses. The median age at enrollment was 43 years (Q1, Q3: 38-48). Among individuals with VL > 40 copies/mL, 60% (36/60) were treatment-experienced with 53% (19/36) of them on Atripla. Genotyping had a 62% (37/60) success rate - 24 were TE, and 13 were TN. A total of 29 participants (78.4, 95% CI: 0.12-0.35) had major HIV DRMs, including at least one non-nucleoside reverse transcriptase inhibitor (NNRTI) associated DRM. In TE individuals, ADR to any antiretroviral drug was 83.3% (20/24), while for PDR was 69.2% (9/13). The most frequent DRMs were nucleoside reverse transcriptase inhibitors (NRTIs) M184V (62.1%, 18/29), NNRTIs V106M (41.4%, 12/29), and K103N (34.4%, 10/29). No integrase strand transfer inhibitor-associated DRMs were reported. Conclusion We report high rates of PDR and ADR in ART-experienced and ART-naïve non-citizens, respectively, in Botswana. Given the uncertainty of time of HIV acquisition and treatment adherence levels in this population, routine HIV-1C VL monitoring coupled with HIVDR genotyping is crucial for long-term ART success.
Collapse
Affiliation(s)
- Patrick T. Mokgethi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Wonderful T. Choga
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Center of Epidemic Response and Innovation, Faculty of Data Sciences, Stellenbosch University, Cape Town, South Africa
- School of Allied Health Professionals, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Natasha O. Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professionals, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Kaelo K. Seatla
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Ontlametse T. Bareng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professionals, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | | | | | - Pearl M. Kaumba
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | | | - Tafireyi Marukutira
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Public Health, Burnet Institute, Melbourne, VIC, Australia
- Department of Epidemiology, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Catherine K. Koofhethile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | | | | | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
9
|
Wang J, Li M, Li J, Deng R. Differences in drug resistance of HIV-1 genotypes in CSF and plasma and analysis of related factors. Virulence 2023; 14:2171632. [PMID: 36694270 PMCID: PMC9908293 DOI: 10.1080/21505594.2023.2171632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The emergence of HIV drug resistance seriously affects the quality of life of patients. However, there has been no extensive study of CSF resistance. The aim of this study is to evaluate common HIV-1 resistance in CSF and compare it with resistance in matched plasma, and analyse the influencing factors of cerebrospinal fluid drug resistance. The matched CSF and plasma samples of 62 HIV-1 patients were tested at one study site in China (Chongqing; 2019-2022). HIV genotyping and drug resistance was evaluated using the Stanford v8.7 algorithm. The diagnosis and treatment data and basic information were collected from the clinical case system, and the influencing factors of drug resistance mutations in CSF was obtained by variance analysis. CSF and matched plasma HIV-1 subtypes were confirmed in 62 patients, and the most frequent recombinant form was CRF07-BC (64.5%). Thirteen patients (21.0%) were detected with drug-resistant mutations, and the sites were consistent in both CSF and matched plasma. The drug-resistant ratios of untreated patients and treated patients were 5/51 (9.8%) and 8/11 (72.7%), respectively. The type with the highest mutation frequency was NNRTI, and no mutation was found in INSTI. Multivariate analysis indicated that ARV treatment was associated with CSF resistance (P < 0.001). The subtypes and drug resistance mutation sites are consistent in CSF and matched plasma samples of HIV-1 patients, and there is a correlation between ARV treatment and possible drug resistance, especially in CSF reservoirs. These findings highlight the concern about CSF drug resistance in HIV patients.
Collapse
Affiliation(s)
- Jie Wang
- Central lab, Chongqing Public Health Medical Center, Chongqing, China
| | - Mei Li
- Central lab, Chongqing Public Health Medical Center, Chongqing, China
| | - Jungang Li
- Central lab, Chongqing Public Health Medical Center, Chongqing, China
| | - Renni Deng
- Central lab, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Renni Deng
| |
Collapse
|
10
|
Chen H, Hao J, Hu J, Song C, Zhou Y, Li M, Chen J, Liu X, Wang D, Xu X, Xin P, Zhang J, Liao L, Feng Y, Li D, Pan SW, Shao Y, Ruan Y, Xing H. Pretreatment HIV Drug Resistance and the Molecular Transmission Network Among HIV-Positive Individuals in China in 2022: Multicenter Observational Study. JMIR Public Health Surveill 2023; 9:e50894. [PMID: 37976080 PMCID: PMC10692882 DOI: 10.2196/50894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Emerging HIV drug resistance caused by increased usage of antiretroviral drugs (ARV) could jeopardize the success of standardized HIV management protocols in resource-limited settings. OBJECTIVE We aimed to characterize pretreatment HIV drug resistance (PDR) among HIV-positive individuals and risk factors in China in 2022. METHODS This cross-sectional study was conducted using 2-stage systematic sampling according to the World Health Organization's surveillance guidelines in 8 provincial-level administrative divisions in 2022. Demographic information and plasma samples were obtained from study participants. PDR was analyzed using the Stanford HIV drug resistance database, and the Tamura-Nei 93 model in HIV-TRACE was used to calculate pairwise matches with a genetic distance of 0.01 substitutions per site. Logistic regression was used to identify and estimate factors associated with PDR. RESULTS PDR testing was conducted on 2568 participants in 2022. Of the participants, 34.8% (n=893) were aged 30-49 years, 81.4% (n=2091) were male, and 3.2% (n=81) had prior ARV exposure. The prevalence of PDR to protease and reverse transcriptase regions, nonnucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, and protease inhibitors were 7.4% (n=190), 6.3% (n=163), 1.2% (n=32), and 0.2% (n=5), respectively. Yunnan, Jilin, and Zhejiang had much higher PDR incidence than did Sichuan. The prevalence of nonnucleoside reverse transcriptase inhibitor-related drug resistance was 6.1% (n=157) for efavirenz and 6.3% (n=163) for nevirapine. Multivariable logistic regression models indicated that participants who had prior ARV exposure (odds ratio [OR] 7.45, 95% CI 4.50-12.34) and the CRF55_01B HIV subtype (OR 2.61, 95% CI 1.41-4.83) were significantly associated with PDR. Among 618 (24.2%) sequences (nodes) associated with 253 molecular transmission clusters (size range 2-13), drug resistance mutation sites included K103, E138, V179, P225, V106, V108, L210, T215, P225, K238, and A98. CONCLUSIONS The overall prevalence of PDR in China in 2022 was modest. Targeted genotypic PDR testing and medication compliance interventions must be urgently expanded to address PDR among newly diagnosed people living with HIV in China.
Collapse
Affiliation(s)
- Hongli Chen
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Sichuan Nursing Vocational College, Chengdu, China
| | - Jingjing Hao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jing Hu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Chang Song
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yesheng Zhou
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Miaomiao Li
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jin Chen
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiu Liu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Dong Wang
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiaoshan Xu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Peixian Xin
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jiaxin Zhang
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Lingjie Liao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Dan Li
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Stephen W Pan
- Department of Public Health, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yuhua Ruan
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
11
|
Wang Z, Wang D, Lin L, Qiu Y, Zhang C, Xie M, Lu X, Lian Q, Yan P, Chen L, Feng Y, Xing H, Wang W, Wu S. Epidemiological characteristics of HIV transmission in southeastern China from 2015 to 2020 based on HIV molecular network. Front Public Health 2023; 11:1225883. [PMID: 37942240 PMCID: PMC10629674 DOI: 10.3389/fpubh.2023.1225883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE HIV/AIDS remains a global public health problem, and understanding the structure of social networks of people living with HIV/AIDS is of great importance to unravel HIV transmission, propose precision control and reduce new infections. This study aimed to investigate the epidemiological characteristics of HIV transmission in Fujian province, southeastern China from 2015 to 2020 based on HIV molecular network. METHODS Newly diagnosed, treatment-naive HIV/AIDS patients were randomly sampled from Fujian province in 2015 and 2020. Plasma was sampled for in-house genotyping resistance test, and HIV molecular network was created using the HIV-TRACE tool. Factors affecting the inclusion of variables in the HIV molecular network were identified using univariate and multivariate logistic regression analyses. RESULTS A total of 1,714 eligible cases were finally recruited, including 806 cases in 2015 and 908 cases in 2020. The dominant HIV subtypes were CRF01_AE (41.7%) and CRF07_BC (38.3%) in 2015 and CRF07_BC (53. 3%) and CRF01_AE (29.1%) in 2020, and the prevalence of HIV drug resistance was 4.2% in 2015 and 5.3% in 2020. Sequences of CRF07_BC formed the largest HIV-1 transmission cluster at a genetic distance threshold of both 1.5 and 0.5%. Univariate and multivariate logistic regression analyses showed that ages of under 20 years and over 60 years, CRF07_BC subtype, Han ethnicity, sampling in 2015, absence of HIV drug resistance, married with spouse, sampling from three cities of Jinjiang, Nanping and Quanzhou resulted in higher proportions of sequences included in the HIV transmission molecular network at a genetic distance threshold of 1.5% (p < 0.05). CONCLUSION Our findings unravel the HIV molecular transmission network of newly diagnosed HIV/AIDS patients in Fujian province, southeastern China, which facilitates the understanding of HIV transmission patterns in the province.
Collapse
Affiliation(s)
- Zhenghua Wang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Dong Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liying Lin
- Fuzhou Institute for Disease Control and Prevention of China Railway Nanchang Bureau Group Co., Ltd., Fuzhou, China
| | - Yuefeng Qiu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Chunyan Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Meirong Xie
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Xiaoli Lu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Qiaolin Lian
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Pingping Yan
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Liang Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Yi Feng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Wang
- National Health Commission Key Laboratory for Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory for Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Shouli Wu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Ostankova YV, Shchemelev AN, Thu HHK, Davydenko VS, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. HIV Drug Resistance Mutations and Subtype Profiles among Pregnant Women of Ho Chi Minh City, South Vietnam. Viruses 2023; 15:2008. [PMID: 37896785 PMCID: PMC10612098 DOI: 10.3390/v15102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
According to the latest data released by UNAIDS, the global number of people living with HIV (PLHIV) in 2021 was 38.4 million, with 1.5 million new HIV infections. In different countries, a significant proportion of these cases occur in the adult fertile population aged 15-49 years. According to UNAIDS, Vietnam had a national HIV prevalence of 0.3% of the total population at the end of 2019, with approximately 230,000 PLHIV. The most effective way to prevent mother-to-child transmission of HIV is ART to reduce maternal viral load. HIV-infected pregnant women should undergo monthly monitoring, especially before the expected date of delivery. The aim of our work was to analyze subtypic structure and drug-resistant variants of HIV in pregnant women in Ho Chi Minh City. The study material was blood plasma samples from HIV-infected pregnant women: 31 women showed virological failure of ART, and 30 women had not previously received therapy. HIV-1 genotyping and mutation detection were performed based on analysis of the nucleotide sequences of the pol gene region. More than 98% of sequences genotyped as HIV-1 sub-subtype CRF01_AE. When assessing the occurrence of drug resistance mutations, genetic resistance to any drug was detected in 74.41% (95% CI: 62.71-85.54%) of patients. These included resistance mutations to protease inhibitors in 60.66% (95% CI: 47.31-72.93%) of patients, to NRTIs in 8.20% (95% CI: 2.72-18.10%), and to NNRTIs in 44.26% (95% CI: 31.55-57.52%). Mutations associated with NRTI (2) and NNRTI (8) resistance as well as PI mutations (12), including minor ones, were identified. The high prevalence of drug resistance mutations found in this study among pregnant women, both in therapeutically naive individuals and in patients with virological failure of ART, indicates that currently used regimens in Vietnam are insufficient to prevent vertical HIV infection.
Collapse
Affiliation(s)
- Yulia V. Ostankova
- Saint Petersburg Pasteur Institute, 19710 St. Petersburg, Russia; (Y.V.O.)
| | | | | | | | - Diana E. Reingardt
- Saint Petersburg Pasteur Institute, 19710 St. Petersburg, Russia; (Y.V.O.)
| | - Elena N. Serikova
- Saint Petersburg Pasteur Institute, 19710 St. Petersburg, Russia; (Y.V.O.)
| | - Elena B. Zueva
- Saint Petersburg Pasteur Institute, 19710 St. Petersburg, Russia; (Y.V.O.)
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 19710 St. Petersburg, Russia; (Y.V.O.)
| |
Collapse
|
13
|
Xu Y, Shi H, Dong X, Ding C, Wu S, Li X, Zhang H, Qiao M, Li X, Zhu Z. Transmitted drug resistance and transmission clusters among ART-naïve HIV-1-infected individuals from 2019 to 2021 in Nanjing, China. Front Public Health 2023; 11:1179568. [PMID: 37674678 PMCID: PMC10478099 DOI: 10.3389/fpubh.2023.1179568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/11/2023] [Indexed: 09/08/2023] Open
Abstract
Background Transmitted drug resistance (TDR) is an increasingly prevalent problem worldwide, which will significantly compromise the effectiveness of HIV treatments. However, in Nanjing, China, there is still a dearth of research on the prevalence and transmission of TDR among ART-naïve HIV-1-infected individuals. This study aimed to understand the prevalence and transmission of TDR in Nanjing. Methods A total of 1,393 participants who were newly diagnosed with HIV-1 and had not received ART between January 2019 and December 2021 were enrolled in this study. HIV-1 pol gene sequence was obtained by viral RNA extraction and nested PCR amplification. Genotypes, TDR and transmission cluster analyses were conducted using phylogenetic tree, Stanford HIV database algorithm and HIV-TRACE, respectively. Univariate and multivariate logistic regression analyses were performed to identify the factors associated with TDR. Results A total of 1,161 sequences were successfully sequenced, of which CRF07_BC (40.6%), CRF01_AE (38.4%) and CRF105_0107 (6.3%) were the main HIV-1 genotypes. The overall prevalence of TDR was 7.8%, with 2.0% to PIs, 1.0% to NRTIs, and 4.8% to NNRTIs. No sequence showed double-class resistance. Multivariate logistic regression analysis revealed that compared with CRF01_AE, subtype B (OR = 2.869, 95%CI: 1.093-7.420) and female (OR = 2.359, 95%CI: 1.182-4.707) were risk factors for TDR. Q58E was the most prevalent detected protease inhibitor (PI) -associated mutation, and V179E was the most frequently detected non-nucleoside reverse transcriptase inhibitor (NNRTI) -associated mutation. A total of 613 (52.8%) sequences were segregated into 137 clusters, ranging from 2 to 74 sequences. Among 44 individuals with TDR (48.4%) within 21 clusters, K103N/KN was the most frequent TDR-associated mutation (31.8%), followed by Q58E/QE (20.5%) and G190A (15.9%). Individuals with the same TDR-associated mutations were usually cross-linked in transmission clusters. Moreover, we identified 9 clusters in which there was a transmission relationship between drug-resistant individuals, and 4 clusters in which drug-resistant cases increased during the study period. Conclusion The overall prevalence of TDR in Nanjing was at a moderate level during the past 3 years. However, nearly half of TDR individuals were included in the transmission clusters, and some drug-resistant individuals have transmitted in the clusters. Therefore, HIV drug-resistance prevention, monitoring and response efforts should be sustained and expanded to reduce the prevalence and transmission of TDR in Nanjing.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Hongjie Shi
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Xiaoxiao Dong
- Department of Microbiology Laboratory, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Chengyuan Ding
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sushu Wu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Xin Li
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Hongying Zhang
- Department of Microbiology Laboratory, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Mengkai Qiao
- Department of Microbiology Laboratory, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Xiaoshan Li
- Department of Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhengping Zhu
- Department of AIDS/STD Control and Prevention, Nanjing Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
14
|
Dong Z, Xu Z, Zhou Y, Tian R, Zhou K, Wang D, Ya X, Shen Q. Genetic characterization of HIV-1 viruses among cases with antiretroviral therapy failure in Suzhou City, China. AIDS Res Ther 2023; 20:41. [PMID: 37381002 PMCID: PMC10303762 DOI: 10.1186/s12981-023-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND This retrospective study aimed to characterize the distribution of HIV-1 genotypes and the prevalence of drug resistance mutations in people with antiretroviral treatment (ART) failure in Suzhou City, China. METHODS Pol gene of HIV-1 viruses in blood samples of EDTA anticoagulants from 398 patients with failed antiviral treatment was successfully amplified by using an in-house assay. Drug resistance mutations were analyzed by using the Stanford HIV Drug Resistance Database system ( https://hivdb.stanford.edu/hivdb/by-mutations/ ). HIV-1 genotypes were determined by the REGA HIV subtyping tool (version 3.46, https://www.genomedetective.com/app/typingtool/hiv ). Near full-length genomes (NFLG) of HIV-1 viruses were obtained by next generation sequencing method. RESULTS Sequences analysis of the pol gene revealed that CRF 01_AE (57.29%, 228/398) was the dominant subtype circulating in Suzhou City, followed by CRF 07_BC (17.34%, 69/398), subtype B (7.54%, 30/398), CRF 08_BC (6.53%, 26/398), CRF 67_01B (3.02%, 12/398) and CRF55_01B (2.51%, 10/398). The overall prevalence of drug-resistant mutations in cases with ART failure was 64.57% (257/398), including 45.48% (181/398) for nucleotide reverse transcriptase inhibitors (NRTIs) mutations, 63.32% (252/398) for non-nucleoside reverse transcriptase inhibitors (NNRTIs) mutations, and 3.02% (12/398) for protease inhibitors (PIs) mutations. Ten near full-length genomes (NFLG) of HIV-1 viruses were identified, including six recombinants of CRF 01_AE and subtype B, two recombinants of CRF 01_AE, subtype B and subtype C sequences, one recombinant of CRF 01_AE and subtype C and one recombinant of CRF 01_AE, subtype A1 and subtype C. CONCLUSIONS The high prevalence of drug-resistant HIV-1 viruses was a serious challenge for HIV prevention and treatment of people with HIV infection. Treatment regimens for ART failure patients should be adjusted over time based on the outcome of drug resistance tests. NFLG sequencing facilitates the identification of new recombinants of HIV-1.
Collapse
Affiliation(s)
- Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Zhihui Xu
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Ying Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210003, China
| | - Runfang Tian
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Kai Zhou
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Di Wang
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Xuerong Ya
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China.
| | - Qiang Shen
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China.
| |
Collapse
|
15
|
Zhao B, Song W, Kang M, Dong X, Li X, Wang L, Liu J, Tian W, Ding H, Chu Z, Wang L, Qiu Y, Han X, Shang H. Molecular Network Analysis Discloses the Limited Contribution to HIV Transmission for Patients with Late HIV Diagnosis in Northeast China. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:679-687. [PMID: 36539633 PMCID: PMC9886604 DOI: 10.1007/s10508-022-02492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
In the "treat all" era, the high rate of late HIV diagnosis (LHD) worldwide remains an impediment to ending the HIV epidemic. In this study, we analyzed LHD in newly diagnosed people living with HIV (PLWH) and its impact on HIV transmission in Northeast China. Sociodemographic information, baseline clinical data, and plasma samples obtained from all newly diagnosed PLWH in Shenyang, the largest city in Northeast China, between 2016 and 2019 were evaluated. Multivariate logistic regression analysis was performed to identify risk factors associated with LHD. A molecular network based on the HIV pol gene was constructed to assess the risk of HIV transmission with LHD. A total of 2882 PLWH, including 882 (30.6%) patients with LHD and 1390 (48.2%) patients with non-LHD, were enrolled. The risk factors for LHD were older age (≥ 30 years: p < .01) and diagnosis in the general population through physical examination (p < .0001). Moreover, the molecular network analysis revealed that the clustering rate (p < .0001), the fraction of individuals with ≥ 4 links (p = .0847), and the fraction of individuals linked to recent HIV infection (p < .0001) for LHD were significantly or marginally significantly lower than those recorded for non-LHD. Our study indicates the major risk factors associated with LHD in Shenyang and their limited contribution to HIV transmission, revealing that the peak of HIV transmission of LHD at diagnosis may have been missed. Early detection, diagnosis, and timely intervention for LHD may prevent HIV transmission.
Collapse
Affiliation(s)
- Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wei Song
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Mingming Kang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xue Dong
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Xin Li
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Lu Wang
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Jianmin Liu
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yu Qiu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China.
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
16
|
Antiretroviral therapy initiation within 7 and 8-30 days post-HIV diagnosis demonstrates similar benefits in resource-limited settings. AIDS 2022; 36:1741-1743. [PMID: 35866529 PMCID: PMC9451863 DOI: 10.1097/qad.0000000000003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We estimated the optimum time to initiate antiretroviral therapy (ART) in a retrospective observational cohort. We observed that ART initiation 7 days or less ( n = 817) and 8-30 days ( n = 1009) were the most important factors with viral suppression, and had similar viral suppression rate, CD4 + T-cell count increase and fractions of individuals with links at least 4 and individuals linked to recent HIV infection in HIV molecular networks. This study provides real-world evidence on the benefits of rapid ART initiation in resource-limited setting.
Collapse
|
17
|
Chen H, Hu J, Song C, Li M, Zhou Y, Dong A, Kang R, Hao J, Zhang J, Liu X, Li D, Feng Y, Liao L, Ruan Y, Xing H, Shao Y. Molecular transmission network of pretreatment drug resistance among human immunodeficiency virus-positive individuals and the impact of virological failure on those who received antiretroviral therapy in China. Front Med (Lausanne) 2022; 9:965836. [PMID: 36106325 PMCID: PMC9464856 DOI: 10.3389/fmed.2022.965836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives We investigated the prevalence of pretreatment drug resistance (PDR), the molecular transmission network among HIV-positive individuals, and the impact of virological failure on those who received antiretroviral therapy (ART) in China. Methods Based on the World Health Organization (WHO) surveillance guidelines for PDR, a baseline survey and follow-up were conducted in 2018 and 2021, respectively. Demographic information and plasma samples were obtained from all participants. HIV pol gene region sequences were used to analyze the PDR and molecular transmission networks using the Stanford HIV database algorithm and HIV-TRACE, respectively. This study assessed the odds ratios (OR) of PDR to virological failure (viral load ≥ 50 copies/mL) after 3 years of ART using multivariable logistic regression. Results Of the 4,084 individuals, 370 (9.1%) had PDR. The prevalence of PDR to non-nucleoside reverse transcriptase inhibitors (5.2%) was notably higher than that to nucleoside reverse transcriptase inhibitors (0.7%, p < 0.001), protease inhibitors (3.0%, p < 0.001), and multidrug resistance (0.3%, p < 0.001). A total of 1,339 (32.8%) individuals from 361 clusters were enrolled in the molecular transmission network. Of the 361 clusters, 22 included two or more individuals with PDR. The prevalence of virological failure among HIV-positive individuals after 3 years of ART without PDR, those with PDR to Chinese listed drugs, and those with PDR to other drugs was 7.9, 14.3, and 12.6%, respectively. Compared with that in HIV-positive individuals without PDR, virological failure after 3 years of ART was significantly higher (OR: 2.02, 95% confidence interval (CI): 1.25–3.27) and not significantly different (OR: 1.72, 95% CI: 0.87–3.43) in individuals with PDR to Chinese listed drugs and those with PDR to other drugs, respectively. Missed doses in the past month were significantly associated with virological failure (OR, 2.82; 95% CI: 4.08–5.89). Conclusion The overall prevalence of PDR was close to a high level and had an impact on virological failure after 3 years of ART. Moreover, HIV drug-resistant strains were transmitted in the molecular transmission network. These results illustrate the importance of monitoring PDR and ensuring virological suppression through drug adherence.
Collapse
|
18
|
Zhao B, Qiu Y, Song W, Kang M, Dong X, Li X, Wang L, Liu J, Ding H, Chu Z, Wang L, Tian W, Shang H, Han X. Undiagnosed HIV Infections May Drive HIV Transmission in the Era of "Treat All": A Deep-Sampling Molecular Network Study in Northeast China during 2016 to 2019. Viruses 2022; 14:v14091895. [PMID: 36146701 PMCID: PMC9502473 DOI: 10.3390/v14091895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Universal antiretroviral therapy (ART, “treat all”) was recommended by the World Health Organization in 2015; however, HIV-1 transmission is still ongoing. This study characterizes the drivers of HIV transmission in the “treat all” era. Demographic and clinical information and HIV pol gene were collected from all newly diagnosed cases in Shenyang, the largest city in Northeast China, during 2016 to 2019. Molecular networks were constructed based on genetic distance and logistic regression analysis was used to assess potential transmission source characteristics. The cumulative ART coverage in Shenyang increased significantly from 77.0% (485/630) in 2016 to 93.0% (2598/2794) in 2019 (p < 0.001). Molecular networks showed that recent HIV infections linked to untreated individuals decreased from 61.6% in 2017 to 28.9% in 2019, while linking to individuals with viral suppression (VS) increased from 9.0% to 49.0% during the same time frame (p < 0.001). Undiagnosed people living with HIV (PLWH) hidden behind the links between index cases and individuals with VS were likely to be male, younger than 25 years of age, with Manchu nationality (p < 0.05). HIV transmission has declined significantly in the era of “treat all”. Undiagnosed PLWH may drive HIV transmission and should be the target for early detection and intervention.
Collapse
Affiliation(s)
- Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Yu Qiu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Wei Song
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang 110031, China
| | - Mingming Kang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Xue Dong
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang 110031, China
| | - Xin Li
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang 110031, China
| | - Lu Wang
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang 110031, China
| | - Jianmin Liu
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang 110031, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
- Correspondence: (H.S.); (X.H.); Tel./Fax: +86-(24)-8328-2634 (H.S. & X.H.)
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
- Laboratory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang 110001, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
- Correspondence: (H.S.); (X.H.); Tel./Fax: +86-(24)-8328-2634 (H.S. & X.H.)
| |
Collapse
|
19
|
He S, Song W, Guo G, Li Q, An M, Zhao B, Gao Y, Tian W, Wang L, Shang H, Han X. Multiple CRF01_AE/CRF07_BC Recombinants Enhanced the HIV-1 Epidemic Complexity Among MSM in Shenyang City, Northeast China. Front Microbiol 2022; 13:855049. [PMID: 35633698 PMCID: PMC9133626 DOI: 10.3389/fmicb.2022.855049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transmission of Unique Recombinant Forms (URFs) has complicated the molecular epidemic of HIV-1. This increasing genetic diversity has implications for prevention surveillance, diagnosis, and vaccine design. In this study, we characterized the HIV-1 URFs from 135 newly diagnosed HIV-1 infected cases between 2016 and 2020 in Shenyang, northeast China and analyzed the evolutionary relationship of them by phylogenetic and recombination approaches. Among 135 URFs, we found that the CRF01_AE/CRF07_BC recombinants were the most common (81.5%, 110/135), followed by CRF01_AE/B (11.9%, 16/135), B/C (3.7%, 5/135), and others (3.0%, 4/135). 94.8% (128/135) of patients infected by URFs were through homosexual contact. Among 110 URFs_0107, 60 (54.5%) formed 11 subclusters (branch support value = 1) and shared the consistent recombination structure, respectively. Four subclusters have caused small-scale spread among different high-risk populations. Although the recombination structures of URFs_0107 are various, the hotspots of recombinants gathered between position 2,508 and 2,627 (relative to the HXB2 position). Moreover, the CRF07_BC and CRF01AE fragments of URFs_0107 were mainly derived from the MSM population. In brief, our results reveal the complex recombinant modes and the high transmission risk of URFs_0107, which calls for more attention on the new URFs_0107 monitoring and strict control in the areas led by homosexual transmission route.
Collapse
Affiliation(s)
- Shan He
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Wei Song
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Gang Guo
- Department of Clinical Laboratory, The Sixth People’s Hospital of Shenyang, Shenyang, China
| | - Qiang Li
- Department of Clinical Laboratory, The Sixth People’s Hospital of Shenyang, Shenyang, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Yang Gao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- *Correspondence: Hong Shang,
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Xiaoxu Han,
| |
Collapse
|