1
|
Zhang T, Yu Y, Li J, Zheng L, Chen S, Mao J. Comparative Transcriptome Analysis of the Effects of a Non-Insect Artificial Diet on the Nutritional Development of Harmonia axyridis. INSECTS 2025; 16:380. [PMID: 40332848 PMCID: PMC12028305 DOI: 10.3390/insects16040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
Artificial diets applied in the mass-rearing propagation of H. axyridis can improve reproductive ability by optimizing the feeding formula. This study used transcriptome data to investigate the effects of various artificial diets on the growth and development of H. axyridis. Results indicate that spawning increased with the low-fat and JH III-supplemented artificial diet (Diet 3). Furthermore, the highest glycogen content found in Diet 3 was significantly different from the other two groups. Triglyceride content decreased as adult feeding time increased in the three artificial diet groups, with the fastest decrease observed in the low-fat diet (Diet 2). Protein content increased gradually in the high-fat diet (Diet 1) group compared to the other treatment groups. The adults reared on low-fat artificial diets, when compared to those on artificial diets supplemented with juvenile hormones at the transcriptome level, were found to have upregulated genes enriched in ubiquitin-mediated proteolysis, ribosome biogenesis, and the hedgehog signaling pathway. In contrast, the genes upregulated in the latter group were enriched in oxidative phosphorylation, amino acid biosynthesis, and the metabolism of other amino acids. The results suggest that nutritional status significantly affects the growth and development of H. axyridis and has practical implications for the artificial feeding of natural pest enemies.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; (T.Z.); (Y.Y.); (S.C.)
- Jinjiang City Fuzhou University Science and Education Park Development Center, Fuzhou University, Jinjiang 362251, China
| | - Yinchen Yu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; (T.Z.); (Y.Y.); (S.C.)
| | - Jianyu Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
| | - Shiwei Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; (T.Z.); (Y.Y.); (S.C.)
| | - Jianjun Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Chen M, Huang Y, Cai L, Qin X, Meng X, Li H, Pang H. Influence of Host Species, Location, and Aphid Prey on Microbial Diversity and Community Dynamics of Aphidophagous Ladybird Beetles in Guangxi, China. Ecol Evol 2025; 15:e71036. [PMID: 39991448 PMCID: PMC11842868 DOI: 10.1002/ece3.71036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Host species, locations, and diet can significantly impact microbial diversity and community in insects. Several ladybird beetles are known as key predators and potential biological control agents for aphids. However, there is limited understanding of how host species, locations, and aphid prey influence the microbial diversity and community of aphidophagous ladybird beetles in natural environments. In this study, we collected 74 samples of ladybirds and their aphid prey from various locations in Guangxi, China, and sequenced the 16S amplicons to investigate differences in their microbiomes. The dominant genera in the ladybird samples, Bacteroides and Alistipes, were rarely reported as predominant in other ladybird populations, indicating a unique genus-level microbial community pattern in Guangxi. Alpha diversity indices and Bray-Curtis distances varied significantly among ladybird species. Abundance analysis revealed that the relative abundance of dominant bacteria in aphidophagous ladybirds differed significantly among different ladybird species and locations. Although the primary and facultative aphid symbionts differed among aphid samples from various populations and locations, they had minimal direct impact on the microbial community of the aphidophagous ladybirds, being sporadically detected in the corresponding predator samples. Our findings provide insights into the microbial communities of ladybirds and aphids in sympatric and distinct field environments, highlighting the plasticity of microbial abundance in aphidophagous ladybirds across different ladybird species and locations, as well as the low retention rate of specific aphid symbionts in ladybird predators.
Collapse
Affiliation(s)
- Mei‐Lan Chen
- School of Environmental and Life SciencesNanning Normal UniversityNanningChina
| | - Yu‐Hao Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Li‐Qun Cai
- State Key Laboratory of Biocontrol, School of EcologySun Yat‐sen UniversityShenzhenChina
| | - Xiang‐Miao Qin
- School of Environmental and Life SciencesNanning Normal UniversityNanningChina
| | - Xin‐Yi Meng
- School of Environmental and Life SciencesNanning Normal UniversityNanningChina
| | - Hao‐Sen Li
- State Key Laboratory of Biocontrol, School of EcologySun Yat‐sen UniversityShenzhenChina
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of EcologySun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
3
|
Wang Y, Gao P, Qin W, Li H, Zheng J, Meng L, Li B. Gut microbiota variation across generations regarding the diet and life stage in Harmonia axyridis (Coleoptera: Coccinellidae). INSECT SCIENCE 2024; 31:1365-1377. [PMID: 38183402 DOI: 10.1111/1744-7917.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
We attempt to determine the effect of the dietary switch from a native to non-native prey on the gut microbiota in the predaceous ladybird Harmonia axyridis larvae and adults and examine how the dietary effect may vary across generations. We fed H. axyridis with different diets, native aphid Megoura japonica (Matsumura) versus non-native mealybug Phenacoccus solenopsis (Tinsley), for 5 generations and sequenced microbes in the gut of the 3rd instar larvae and adults of the 1st, 3rd, and 5th generations. In addition, we identified microbes in M. japonica and P. solenopsis. The 2 prey species differed in microbial community as measured by abundances of prevalent microbial genera and diversity. In H. axyridis, abundances of some prevalent microbial genera differed between the 2 diets in the 1st and 3rd generations, but the difference disappeared in the 5th generation; this tendency is more obvious in adults than in larvae. Overall, gut microbial assemblages became gradually cohesive over generations. Microbial diversity differed between diets in the 1st and 3rd generations but became similar in the 5th generation. Major prevalent gut microbial genera are predicted to be associated with metabolic functions of H. axyridis and associated genera are more abundant for consuming the mealybug than the aphid. Our findings from this study suggest that the gut microbiota in H. axyridis is flexible in response to the dietary switch, but tends toward homogeneity in microbial composition over generations.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenquan Qin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Wu LH, Hu CX, Liu TX. Metagenomic profiling of gut microbiota in Fall Armyworm (Spodoptera frugiperda) larvae fed on different host plants. BMC Microbiol 2024; 24:337. [PMID: 39256682 PMCID: PMC11389342 DOI: 10.1186/s12866-024-03481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The fall armyworm (FAW, Spodoptera frugiperda) is a polyphagous pest known for causing significant crop damage. The gut microbiota plays a pivotal role in influencing the biology, physiology and adaptation of the host. However, understanding of the taxonomic composition and functional characteristics of the gut microbiota in FAW larvae fed on different host plants remains limited. METHODS This study utilized metagenomic sequencing to explore the structure, function and antibiotic resistance genes (ARGs) of the gut microbiota in FAW larvae transferred from an artificial diet to four distinct host plants: maize, sorghum, tomato and pepper. RESULTS The results demonstrated significant variations in gut microbiota structure among FAW larvae fed on different host plants. Firmicutes emerged as the dominant phylum, with Enterococcaceae as the dominant family and Enterococcus as the prominent genus. Notably, Enterococcus casseliflavus was frequently observed in the gut microbiota of FAW larvae across host plants. Metabolism pathways, particularly those related to carbohydrate and amino acid metabolism, played a crucial role in the adaptation of the FAW gut microbiota to different host plants. KEGG orthologs associated with the regulation of the peptide/nickel transport system permease protein in sorghum-fed larvae and the 6-phospho-β-glucosidase gene linked to glycolysis/gluconeogenesis as well as starch and sucrose metabolism in pepper-fed larvae were identified. Moreover, the study identified the top 20 ARGs in the gut microbiota of FAW larvae fed on different host plants, with the maize-fed group exhibiting the highest abundance of vanRC. CONCLUSIONS Our metagenomic sequencing study reveals significant variations in the gut microbiota composition and function of FAW larvae across diverse host plants. These findings underscore the intricate co-evolutionary relationship between hosts and their gut microbiota, suggesting that host transfer profoundly influences the gut microbiota and, consequently, the adaptability and pest management strategies for FAW.
Collapse
Affiliation(s)
- Li-Hong Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Chao-Xing Hu
- Institute of Entomology, Guizhou University, Guiyang, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Wang X, Huangfu N, Chen L, Zhang K, Li D, Gao X, Li B, Wang L, Zhu X, Ji J, Luo J, Cui J. Effects of developmental stages, sex difference, and diet types of the host marmalade hoverfly ( Episyrphus balteatus) on symbiotic bacteria. Front Microbiol 2024; 15:1433909. [PMID: 39296285 PMCID: PMC11408942 DOI: 10.3389/fmicb.2024.1433909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Symbiotic bacteria play key roles in a variety of important life processes of insects such as development, reproduction and environmental adaptation, and the elucidation of symbiont population structure and dynamics is crucial for revealing the underlying regulatory mechanisms. The marmalade hoverfly (Episyrphus balteatus) is not only a remarkable aphid predator, but also a worldwide pollinator second to honeybees. However, its symbiont composition and dynamics remain unclear. Methods Herein, we investigate the symbiotic bacterial dynamics in marmalade hoverfly throughout whole life cycle, across two sexes, and in its prey Megoura crassicauda by 16S rRNA sequencing. Results In general, the dominant phyla were Proteobacteria and Firmicutes, and the dominant genera were Serratia and Wolbachia. Serratia mainly existed in the larval stage of hoverfly with the highest relative abundance of 86.24% in the 1st instar larvae. Wolbachia was found in adults and eggs with the highest relative abundance of 62.80% in eggs. Significant difference in species diversity was observed between the adults feeding on pollen and larvae feeding on M. crassicauda, in which the dominant symbiotic bacteria were Asaia and Serratia, respectively. However, between two sexes, the symbionts exhibited high similarity in species composition. In addition, our results suggested that E. balteatus obtainded Serratia mainly through horizontal transmission by feeding on prey aphids, whereas it acquired Wolbachia mainly through intergeneration vertical transmission. Taken together, our study revealed the effects of development stages, diet types and genders of E. balteatus on symbionts, and explored transmission modes of dominant bacteria Serratia and Wolbachia. Discussion Our findings lay a foundation for further studying the roles of symbiotic bacteria in E. balteatus life cycle, which will benefit for revealing the co-adaptation mechanisms of insects and symbiotic bacteria.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ningbo Huangfu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lulu Chen
- Xinjiang Tianyu Agricultural Science Modern Agricultural Industrialization Development Co., Ltd., Xinjiang, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xueke Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Li Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Sun Y, Hao Y, Wang S, Chen X. Changes in the bacterial communities of Harmonia axyridis (Coleoptera: Coccinellidae) in response to long-term cold storage and progressive loss of egg viability in cold-stored beetles. Front Microbiol 2024; 15:1276668. [PMID: 38533331 PMCID: PMC10964723 DOI: 10.3389/fmicb.2024.1276668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteria have a profound influence on life history and reproduction of numerous insects, while the associations between hosts and bacteria are substantially influenced by environmental pressures. Cold storage is crucial for extending the shelf life of insects used as tools for biological control, but mostly causes detrimental effects. In this study, we observed a great decrease in egg hatch rate of cold-stored Harmonia axyridis during the later oviposition periods. Furthermore, most eggs produced by their F1 offspring exhibited complete loss of hatchability. We hypothesized that long-term exposure to cold may greatly alter the bacterial community within the reproductive tracts of H. axyridis, which may be an important factor contributing to the loss of egg viability. Through sequencing of the 16S rRNA gene, we discovered considerable changes in the bacterial structure within the reproductive tracts of female cold-stored beetles (LCS_F) compared to non-stored beetles (Control_F), with a notable increase in unclassified_f_Enterobacteriaceae in LCS_F. Furthermore, in accordance with the change of egg hatchability, we observed a slight variation in the microbial community of eggs produced by cold-stored beetles in early (Egg_E) and later (Egg_L) oviposition periods as well as in eggs produced by their F1 offspring (Egg_F1). Functional predictions of the microbial communities revealed a significant decrease in the relative abundance of substance dependence pathway in LCS_F. Moreover, this pathway exhibited relatively lower abundance levels in both Egg_L and Egg_F1 compared to Egg_E. These findings validate that long-term cold storage can greatly modify the bacterial composition within H. axyridis, thereby expanding our understanding of the intricate bacteria-insect host interactions.
Collapse
Affiliation(s)
- Yuanxing Sun
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | | | | | | |
Collapse
|
7
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Xie BH, Chao L, Wan SJ, Si HR, Yu WD, Huang Z, Wang SG, Desneux N, Tang B, Sun SS. Analysis of gut microbiota of ladybug beetle (Harmonia axyridis) after feeding on different artificial diets. BMC Microbiol 2024; 24:5. [PMID: 38172684 PMCID: PMC10763339 DOI: 10.1186/s12866-023-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Harmonia axyridis is an effective natural enemy insect to a variety of phloem-sucking pests and Lepidopteran larvae, such as aphids, scabies, and phylloxera, while its industrial production is limited due to unmature artificial diet. Insect intestinal microbiota affect host development and reproduction. The aim of this study is to understand intestinal microbiota composition of H. axyridis and screen effective probiotics on artificial diet. Considering the role of the components and composition of the diet on the structure and composition of the intestinal microbiome, four kinds of diets were set up: (1) aphid; (2) basic diet; (3) basic diet + glucose; (4) basic diet + trehalose. The gut microbiota of H. axyridis was detected after feeding on different diets. RESULTS Results showed that the gut microbiota between artificial diet group and aphid groups were far apart, while the basic and glucose groups were clearly clustered. Besides, the glucose group and trehalose group had one unique phylum, Cryptophyta and Candidatus Saccharibacteria, respectively. The highest abundance of Proteobacteria was found in the aphid diet. The highest abundance of Firmicutes was found in the basic diet. However, the addition of glucose or trehalose alleviated the change. In addition, the relative abundance of Enterobacter, Klebsiella, Enterobacteriaceae_unclassified, Enterobacteriales_unclassified and Serratia in the aphid group was higher than other groups. Moreover, the function of gut genes in each group also showed clear differences. CONCLUSION These results have offered a strong link between artificial diets and gut microbes, and also have provided a theoretical basis for the screening of synergistic probiotics in artificial diet.
Collapse
Affiliation(s)
- Bing-Hua Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Si-Jing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hui-Ru Si
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei-Dong Yu
- Zhejiang Dingyi Biotechnology Corporation, Quzhou, 324100, Zhejiang, China
| | - Zhen Huang
- Zhejiang Dingyi Biotechnology Corporation, Quzhou, 324100, Zhejiang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | | | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Si-Si Sun
- Guizhou Institute of Mountainous Meteorological Sciences, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
9
|
Hao C, de Jonge N, Zhu D, Feng L, Zhang B, Chen TW, Wu D, Nielsen JL. Food origin influences microbiota and stable isotope enrichment profiles of cold-adapted Collembola ( Desoria ruseki). Front Microbiol 2022; 13:1030429. [PMID: 36504791 PMCID: PMC9730247 DOI: 10.3389/fmicb.2022.1030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Collembola are a group of globally distributed microarthropods that can tolerate low temperature and are active in extremely cold environments. While it is well known that animal diets can shape their microbiota, the microbiota of soil animals is not well described, particularly for animals with limited food resources, such as Collembola active in winter at low temperatures. In this study, we explored the effects of three different food sources; corn litter (agriculture grain residuals), Mongolian oak litter (natural plant residuals), and yeast (common food for Collembola culture), on the microbiota of a winter-active Collembola species, Desoria ruseki. We found that microbial diversity and community composition of the Collembola were strongly altered after feeding with different food sources for 30 days. Collembola individuals fed on corn litter harbored the highest bacterial richness and were dominated by a representative of Microbacteriaceae. In contrast, those fed on yeast exhibited the lowest bacterial richness and were primarily colonized by Pseudomonas. The microbial communities associated with the winter-active Collembola differed significantly from those observed in the food. Collembola nutrient turnover also differed when cultured with different food sources, as indicated by the C and N stable isotopic signatures. Our study highlights microbial associations with stable isotopic enrichments of the host. Specifically, the Arthrobacter was positively correlated with δ13C enrichment in the host. Representatives of Microbacteriaceae, Micrococcaceae, TM7a, Devosia, and Rathayibacter were positively correlated with δ15N enrichment of the host. Our study indicates that food sources are major determinants for Collembola microbiota that simultaneously alter consumers' isotopic niches, thereby improving our understanding of the roles played by host-microbiota interactions in sustaining soil biodiversity during the winter.
Collapse
Affiliation(s)
- Cao Hao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China,Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lichao Feng
- Forest Protection, Beihua University, Jilin, China
| | - Bing Zhang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czechia
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China,Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,*Correspondence: Donghui Wu,
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|