1
|
Zhang H, Si L, Liu C, Liu Y. The state and trends of cinnamaldehyde research over the past three decades: a bibliometric and visualized analysis. J Pharm Pharmacol 2025:rgaf019. [PMID: 40328509 DOI: 10.1093/jpp/rgaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVES As an aromatic aldehyde, Cinnamaldehyde (CAL) is the representative bioactive component of cinnamon, possessing extensive applications in the fields of pharmaceuticals, chemicals, food, and feed. The objective of the present study is to elucidate the state and trends of CAL research via bibliometric and visualized analysis. METHODS Research on CAL was obtained from the Web of Science Core Collection, and knowledge graphs were created employing CiteSpace software. Bibliometric analysis was conducted on 6205 articles published from 1994 to 2023. KEY FINDINGS The findings indicate a steadily growing trend in the quantity of papers published on CAL. The collaborative network visualization analysis has determined that China, the Chinese Academy of Sciences, and Kumar Venkitanarayanan have the highest number of publications among all countries, institutions, and authors, respectively. According to the keyword and cocited reference analysis, the primary research hotspots and frontiers include pharmacological effect, underlying mechanism, chemical structure modification, encapsulation technology, and delivery system, highlighting the cross-disciplinary characteristic of CAL research. CONCLUSIONS This study delineates the research hotspots and trends of CAL. Future research should focus on exploring the pharmacological effects and mechanisms of CAL in more depth, optimizing chemical derivatization methods, and refining stimuli-responsive smart release systems of CAL.
Collapse
Affiliation(s)
- Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longfei Si
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Sathiyamoorthi E, Boya BR, Lee JH, Lee J. Antimicrobial Efficacy of Trifluoro-Anilines Against Vibrio Species. Int J Mol Sci 2025; 26:623. [PMID: 39859338 PMCID: PMC11765651 DOI: 10.3390/ijms26020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Vibrios are naturally present in marine ecosystems and are commonly allied with live seafood. Vibrio species frequently cause foodborne infections, with Vibrio parahaemolyticus recently becoming a significant contributor to foodborne illness outbreaks. In response, aniline and 68 of its aniline derivatives were studied due to their antibacterial effects targeting V. parahaemolyticus and Vibrio harveyi. Among these, 4-amino-3-chloro-5-nitrobenzotrifluoride (ACNBF) and 2-iodo-4-trifluoromethylaniline (ITFMA) demonstrated both antibacterial and antibiofilm properties. The minimum inhibitory concentrations (MIC) for ACNBF and ITFMA were 100 µg/mL and 50 µg/mL, respectively, against planktonic cells. The active compounds effectively suppressed biofilm formation in a manner dependent on the dosage. Additionally, these trifluoro-anilines significantly reduced virulence factors such as motility, protease activity, hemolysis, and indole production. Both trifluoro-anilines caused noticeable destruction to the membrane of bacterial cells and, at 100 µg/mL, exhibited bactericidal activity against V. parahaemolyticus within 30 min. Toxicity assays using the Caenorhabditis elegans and seed germination models showed that the compounds displayed mild toxicity. As a result, ACNBF and ITFMA inhibited the growth of both planktonic cells and biofilm formation. Furthermore, these active compounds effectively prevented the formation of biofilm on the surfaces of shrimp and squid models, highlighting their potential use in controlling seafood contamination.
Collapse
Affiliation(s)
| | | | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (E.S.); (J.-H.L.)
| |
Collapse
|
3
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
Paramanya S, Lee JH, Lee J. Antibiofilm activity of carotenoid crocetin against Staphylococcal strains. Front Cell Infect Microbiol 2024; 14:1404960. [PMID: 38803574 PMCID: PMC11128560 DOI: 10.3389/fcimb.2024.1404960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis stand as notorious threats to human beings owing to the myriad of infections they cause. The bacteria readily form biofilms that help in withstanding the effects of antibiotics and the immune system. Intending to combat the biofilm formation and reduce the virulence of the pathogens, we investigated the effects of carotenoids, crocetin, and crocin, on four Staphylococcal strains. Crocetin was found to be the most effective as it diminished the biofilm formation of S. aureus ATCC 6538 significantly at 50 µg/mL without exhibiting bactericidal effect (MIC >800 µg/mL) and also inhibited the formation of biofilm by MSSA 25923 and S. epidermidis at a concentration as low as 2 µg/mL, and that by methicillin-resistant S. aureus MW2 at 100 µg/mL. It displayed minimal to no antibiofilm efficacy on the Gram-negative strains Escherichia coli O157:H7 and Pseudomonas aeruginosa as well as a fungal strain of Candida albicans. It could also curb the formation of fibrils, which partly contributes to the biofilm formation in S. epidermidis. Additionally, the ADME analysis of crocetin proclaims how relatively non-toxic the chemical is. Also, crocetin displayed synergistic antibiofilm characteristics in combination with tobramycin. The presence of a polyene chain with carboxylic acid groups at its ends is hypothesized to contribute to the strong antibiofilm characteristics of crocetin. These findings suggest that using apocarotenoids, particularly crocetin might help curb the biofilm formation by S. aureus and S. epidermidis.
Collapse
Affiliation(s)
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Jung J, Jo D, Kim SJ. Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment. J Microbiol Biotechnol 2024; 34:538-546. [PMID: 38146216 PMCID: PMC11016793 DOI: 10.4014/jmb.2311.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, indepth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 μg/ml, 125 μg/ml, and 125 μg/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 μg/ml, 250 μg/ml, and 500 μg/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 μg/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.
Collapse
Affiliation(s)
- Jihye Jung
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dawon Jo
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Soo-Jin Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
6
|
Zhang J, Ma Q, Wang C, Meng N. Unraveling the signaling roles of indole in an opportunistic pathogen Pseudomonas aeruginosa strain Jade-X. CHEMOSPHERE 2024; 352:141482. [PMID: 38387666 DOI: 10.1016/j.chemosphere.2024.141482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Pseudomonas aeruginosa, which can produce several toxins and form biofilm, is listed among the priority pathogens. Indole is a ubiquitous aromatic pollutant and signaling molecule produced by tryptophanase in bacteria. Herein, the impacts of indole on a newly isolated P. aeruginosa strain Jade-X were systematically investigated. Indole (0.5-2.0 mM) enhanced the biofilm production by 1.33-2.31-fold after 24 h incubation at 30 °C. However, the effects indole on biofilm formation were intricate and closely intertwined with factors such as incubation temperature, bacterial growth stage, and indole concentration. The twitching motility was enhanced by 1.15-1.99-fold by indole, potentially facilitating surface exploration and biofilm development. Indole reduced the production of virulence factors (pyocyanin and pyoverdine) as well as altered the surface properties (zeta potential and hydrophobicity). Transcriptional analysis revealed that indole (1.0 mM) significantly downregulated mexGHI-opmD efflux genes (4.73-6.91-fold) and virulence-related genes (pqs, pch, and pvd clusters, and flagella-related genes), while upregulating pili-related genes in strain Jade-X. The quorum sensing related signal regulators, including RhlR, LasR, and MvfR (PqsR), were not altered by indole, while other six transcriptional regulators (AmrZ, BfmR, PchR, QscR, SoxR, and SphR) were significantly affected, implying that indole effects might be regulated in a complex and delicate manner. This study should provide new insights into our understanding of indole signaling roles.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
7
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|