1
|
Shen J, Wu Y, Fang L, Tan Z. Huoxiang Zhengqi decoction ameliorates gastrointestinal disorders induced by cold and humid environmental stress via modulation of intestinal mucosal microbiota and amino acid metabolism. 3 Biotech 2025; 15:150. [PMID: 40331052 PMCID: PMC12049350 DOI: 10.1007/s13205-025-04324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
This study investigates the intestinal microecological mechanisms of Huoxiang Zhengqi (HXZQ) and its potential clinical applications in alleviating gastrointestinal (GI) disorders caused by cold and humid exposure. In this study, an animal model of cold exposure with GI disorders was prepared by simulating cold and humid environmental stress (CHS). Using this model, PacBio HiFi sequencing of intestinal mucosa full-length 16S rRNA and LC-MS targeted amino acid metabolomic analysis were conducted. An interaction network between the two was constructed to assess the microecological mechanism of intervention by HXZQ. Results indicate that HXZQ accelerates the recovery of GI disorders and restores the integrity of the mucus barrier in CHS mice. PacBio HiFi full-length sequencing of intestinal mucosa suggested that HXZQ can regulate the homeostasis of intestinal mucosal microbiota in CHS mice by promoting the proliferation of probiotics such as Lactobacillus reuteri (with a 6% increase in relative abundance) and inhibiting conditional pathogenic bacteria such as Helicobacter (with its relative abundance reduced to 0%). Moreover, the integrated profiling of the microbiota amino acid metabolic function and LC/MS targeted amino acid indicated that Glu and Asp are the main metabolic pathways of HXZQ intervention by intestinal mucosal microbiota in CHS mice, which is significantly associated with Lactobacillus reuteri based on the interaction network of intestinal mucosal microbiota and amino acid metabolism (P < 0.05). In conclusion, HXZQ plays a crucial role in maintaining intestinal mucosal microbiota homeostasis. By modulating the composition structure of intestinal mucosal microbiota, particularly Lactobacillus reuteri, it facilitates the restoration of Glu and Asp amino acid metabolism in the host. These effects collectively contribute to the treatment of gastrointestinal disorders induced by cold and humid environmental stress. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04324-3.
Collapse
Affiliation(s)
- Junxi Shen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| | - Yi Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| | - Leyao Fang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| |
Collapse
|
2
|
Li L, Long Q, Deng N, Tan Z. Association of intestinal mucosal barrier function with intestinal microbiota in Spleen-Kidney Yang Deficiency IBS-D mice. Front Microbiol 2025; 16:1567971. [PMID: 40365066 PMCID: PMC12069268 DOI: 10.3389/fmicb.2025.1567971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Background To establish and evaluate an IBS-D mouse model with Spleen-Kidney Yang Deficiency, explore the microecological mechanisms of IBS-D, and provide experimental evidence for the clinical diagnosis and treatment of IBS-D with Spleen-Kidney Yang Deficiency. Methods SPF-grade female Kunming mice were used to establish an IBS-D model with Spleen-Kidney Yang Deficiency through Folium senna-adenine administration combined with restraint-clamping tail. (1) Clinical symptoms and signs were assessed using diagnostic criteria. (2) The small intestine structure was examined via Alcian blue staining, and intestinal barrier markers like D-LA (D-lactate) and DAO (diamine oxidase) were measured by ELISA to assess pathophysiological changes. (3) 16S rRNA gene sequencing was performed to analyze the intestinal microbiota. Results (I) The model mice exhibited symptoms of IBS-D with Spleen-Kidney Yang Deficiency. (II) ELISA and alcian blue staining revealed elevated levels of D-LA and DAO activity in the model group, indicating damage to the intestinal mucosal barrier structure. (III) Analysis of the intestinal mucosal microbiota in the model group revealed differences in dominant and characteristic bacteria at various taxonomic levels compared with those in the normal group, reflecting an imbalance in the intestinal mucosal microbiota. (IV) Lactobacillus and Lentilactobacillus are associated with mucosal barrier damage in mice modeled by Folium senna-adenine administration combined with restraint-clamping tail. Conclusion The combination of Folium senna-adenine administration with restraint-clamping tail can be used to successfully establish an IBS-D mouse model with Spleen-Kidney Yang Deficiency. This model leads to damage to the intestinal mucosal structure. Streptococcus, Serratia, Helicobacter, Phocaeicola, and Desulfomicrobium may serve as potential biological markers for the intestinal mucosal microbiota.
Collapse
Affiliation(s)
- Liwen Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Qi Long
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| |
Collapse
|
3
|
Li X, Li N, Pei H, Ren Y, Li L, Sun L, Wu Y, Yuan J, Ma Y. Zhuanggu Shubi ointment mediated the characteristic bacteria-intestinal mucosal barrier-bone metabolism axis to intervene in postmenopausal osteoporosis. Front Cell Infect Microbiol 2024; 14:1500111. [PMID: 39698319 PMCID: PMC11652507 DOI: 10.3389/fcimb.2024.1500111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Background Zhuanggu Shubi ointment (ZGSBG) has good efficacy in postmenopausal osteoporosis (PMO), but the mechanism of efficacy involving gut microecology has not been elucidated. Objective This study investigated the mechanism of ZGSBG in regulating gut microecology in PMO. Methods The bilateral ovarian denervation method was used to construct a rat model of PMO and was administered ZGSBG. Behavior, bone transformation, gut microbiota, intestinal mucosal barrier, and intestinal inflammatory-related indexes were detected. Results After ZGSBG intervention, bone R-hydroxy glutamic acid protein and procollagen type I N-terminal propeptides were significantly upregulated, while C-terminal telopeptide of type-I collagen and tartrate-resistant acid phosphatase-5b were significantly downregulated. Pathological analysis demonstrated an improvement in femoral and colonic structures. The expressions of zonula occludens-1, occludin, claudin-1, and secretory immunoglobulin A in the colonic tissues were significantly elevated, while the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, and lipopolysaccharides were reduced. Moreover, characteristic bacteria Muribaculaceae and Prevotella were significantly enriched. Furthermore, Muribaculaceae and Prevotella have a positive correlation with intestinal mucosal barrier function and a negative correlation with intestinal inflammatory responses. Conclusion ZGSBG promoted bone formation, inhibited bone resorption, regulated gut microbiota, repaired intestinal mucosal barrier damage, and inhibited intestinal inflammatory responses in PMO rats. Muribaculaceae and Prevotella might play positive roles in ZGSBG treatment of intestinal mucosal barrier injury and inflammatory reactions in PMO.
Collapse
Affiliation(s)
- Xiaoya Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Huan Pei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yu Ren
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lei Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lan Sun
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuan Ma
- Department of Orthopedicis, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
4
|
Biagioli M, Di Giorgio C, Massa C, Marchianò S, Bellini R, Bordoni M, Urbani G, Roselli R, Lachi G, Morretta E, Piaz FD, Charlier B, Fiorillo B, Catalanotti B, Cari L, Nocentini G, Ricci P, Distrutti E, Festa C, Sepe V, Zampella A, Monti MC, Fiorucci S. Microbial-derived bile acid reverses inflammation in IBD via GPBAR1 agonism and RORγt inverse agonism. Biomed Pharmacother 2024; 181:117731. [PMID: 39657506 DOI: 10.1016/j.biopha.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
The interplay between the dysbiotic microbiota and bile acids is a critical determinant for development of a dysregulated immune system in inflammatory bowel disease (IBD). Here we have investigated the fecal bile acid metabolome, gut microbiota composition, and immune responses in IBD patients and murine models of colitis and found that IBD associates with an elevated excretion of primary bile acids while secondary, allo- and oxo- bile acids were reduced. These changes correlated with the disease severity, mucosal expression of pro-inflammatory cytokines and chemokines, and reduced inflow of anti-inflammatory macrophages and Treg in the gut. Analysis of bile acids metabolome in the feces allowed the identification of five bile acids: 3-oxo-DCA, 3-oxo-LCA, allo-LCA, iso-allo-LCA and 3-oxo-UDCA, whose excretion was selectively decreased in IBD patients and diseased mice. By transactivation assay and docking calculations all five bile acids were shown to act as GPBAR1 agonists and RORγt inverse agonists, skewing Th17/Treg ratio and macrophage polarization toward an M2 phenotype. In a murine model of colitis, administration of 3-oxo-DCA suffices to reverse colitis development and intestinal dysbiosis in a GPBAR1-dependent manner. In vivo administration of 3-oxo-DCA to colitic mice also reverses disease severity and RORγt activation induced by a RORγt agonist and IL-23, a Th17 inducing cytokine. These results demonstrated that intestinal excretion of 3-oxoDCA, a dual GPBAR1 agonist and RORγt inverse agonist, is reduced in IBD and in models of colitis and its restitution protects against colitis development, highlighting a potential role for this agent in IBD management.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Bar Pharmaceuticals s.r.l., Via Gramsci 88/A, Reggio Emilia 42124, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Bruno Charlier
- University hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
5
|
Guo M, Wu Y, Peng M, Xiao N, Lei Z, Tan Z. Decreasing of Trimethylamine N-Oxide by Cecal Microbiota and Choline-Trimethylamine Lyase are Associated with Sishen Pill on Diarrhea with Kidney-Yang Deficiency Syndrome. J Inflamm Res 2024; 17:7275-7294. [PMID: 39429849 PMCID: PMC11486675 DOI: 10.2147/jir.s470254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Sishen Pill (SSP) is a traditional Chinese medicine prescription commonly used to treat diarrhea with kidney-yang deficiency syndrome. The aim was to investigate the underlying mechanisms of SSP's therapeutic effects, providing experimental evidence for its mechanism of action. METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was induced using adenine combined with Folium sennae. After successful model replication, SSP decoction was administered. CutC activity, TMAO, IL-6, TNF-α levels, and cecal content microbiota were measured. RESULTS SSP significantly improved the general behavioral characteristics of diarrhea mice, and reduced CutC activity, TMAO and IL-6 levels. Sequencing results indicated significant changes at the phylum and genus levels. Correlation analysis revealed a positive correlation between CutC activity and Faecalibaculum (p<0.05) and Chryseobacterium (p<0.05), and a significant negative correlation with Prevotellaceae UCG-001, Rikenella (p<0.05), Acinetobacter (p<0.05), Parasutterella (p<0.05), and Lacticaseibacillus (p<0.05). TNF-α levels showed a significant negative correlation with Lacticaseibacillus (p<0.05), Prevotellaceae UCG-001 (p<0.01), Parasutterella (p<0.05), and Candidatus Saccharimonas (p<0.05). IL-6 levels exhibited a significant negative correlation with Rikenella (p<0.05), Acinetobacter (p<0.05), Prevotellaceae UCG-001 (p<0.05), Lacticaseibacillus (p<0.01), and Parasutterella (p<0.05), and a significant positive correlation with Faecalibaculum (p<0.05), Chryseobacterium (p<0.01), and A2. Serum TMAO levels showed a significant positive correlation with Faecalibaculum (p<0.05) and Chryseobacterium (p<0.01), and hepatic TMAO levels exhibited a significant positive correlation with Chryseobacterium (p<0.05). CONCLUSION SSP significantly alleviated the symptoms of diarrhea with kidney-yang deficiency syndrome by modulating the cecal microbiota, downregulating CutC activity, and reducing TMAO and inflammatory factor levels. The cecal microbiota-CutC-TMAO-inflammatory cytokine axis may be a key mechanism underlying the therapeutic effects of SSP.
Collapse
Affiliation(s)
- Mingmin Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, People’s Republic of China
| | - Yi Wu
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Maijiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, People’s Republic of China
| | - Nenqun Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, People’s Republic of China
| | - Zhijun Lei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, People’s Republic of China
| | - Zhoujin Tan
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Zhou T, Zhang Y, Li Z, Lu C, Zhao H. Research progress of traditional Chinese medicine on the treatment of diarrhea by regulating intestinal microbiota and its metabolites based on renal-intestinal axis. Front Cell Infect Microbiol 2024; 14:1483550. [PMID: 39397865 PMCID: PMC11466940 DOI: 10.3389/fcimb.2024.1483550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Intestinal microbiota and its metabolites are involved in many physiological processes of the human body and play a vital role in maintaining human health. The occurrence of kidney disease can cause intestinal microbiota imbalance, resulting in diarrhea. The change of intestinal microbiota and its metabolites content can aggravate renal function injury, which has a bidirectional regulating effect. The theory of renal-intestinal axis further clarified that the impaired renal function is related to the imbalance of intestinal microorganisms, and the impaired intestinal barrier is related to the accumulation of toxin products. Because of its unique therapeutic advantages, Traditional Chinese Medicine can treat diarrhea by enhancing the growth of beneficial bacteria, inhibiting pathogenic bacteria and immune regulation, and slow down the continuous deterioration of kidney disease. This paper focuses on the relationship between intestinal microbiota and its metabolites and diarrhea, the influence of Traditional Chinese Medicine on intestinal microbiota in the treatment of diarrhea, and the role of intestinal microbiota and its metabolites in the renal-intestinal axis. It provides a theoretical basis for Traditional Chinese Medicine to regulate intestinal microbiota and its metabolites based on the renal-intestinal axis theory to treat nephrology-induced diarrhea, and also provides a new idea and method for Traitional Chinese Medicine to treat nephrology-induced diarrhea.
Collapse
Affiliation(s)
- Tong Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yifan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhaoyuan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Medical, Huzhou University, Huzhou, Zhejiang, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
7
|
Xie S, Deng N, Fang L, Shen J, Tan Z, Cai Y. TMAO is involved in kidney-yang deficiency syndrome diarrhea by mediating the "gut-kidney axis". Heliyon 2024; 10:e35461. [PMID: 39170478 PMCID: PMC11336722 DOI: 10.1016/j.heliyon.2024.e35461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Trimethylamine-N-oxide (TMAO) is a harmful metabolite dependent on the intestinal microbiota and excreted through the kidneys. According to numerous investigations, rich circulation concentrations of TMAO have been linked to kidney and gastrointestinal disorders. Through the "gut-kidney axis" mediated by TMAO, this research attempted to clarify the microbiological causes of kidney-yang deficiency syndrome diarrhea. METHODS Adenine and Folium Sennae were used to create a mouse model of kidney-yang deficiency syndrome diarrhea. 16S rRNA sequencing was used to identify the traits of the intestinal mucosal microbiota. ELISA was used to assess TMAO, transforming growth factor-β1 (TGF-β1), interleukin-1β (IL-1β), and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Kidney tissue fibrosis was evaluated using Masson's trichrome staining, and immunohistochemical labeling was used to investigate the protein expression of occludin and Zonula Occludens-1(ZO-1) in small intestine tissue. Microbial activity was determined by using fluorescein diacetate (FDA) hydrolysis spectrophotometry. RESULTS TMAO showed a positive correlation with NLRP3, IL-1β and TGF-β1, all of which exhibited substantial increases (P < 0.05). Significant renal fibrosis and decreased ZO-1 and occludin expression in small intestine tissues were detected in the model group. The sequencing results revealed alterations in both α and β diversities of small intestinal mucosal microbiota. Elevated TMAO concentrations were potentially associated with increasing Firmicutes/Bacteroidota (F/B) ratios, Streptococcus, Pseudomonas and unclassified Clostridia UCG 014, but with decreasing Rothia and RB41 abundances. CONCLUSION This study establishes a link between intestinal microbiota dysbiosis and elevated TMAO concentrations. TMAO can activate inflammatory responses and cytokines, contributing to kidney-yang deficiency syndrome diarrhea via the "gut-kidney axis". Moreover, TMAO may coincide with disruptions in the intestinal barrier and renal fibrosis. Dysfunction of the "gut-kidney axis" further elevates TMAO levels, perpetuating a vicious cycle.
Collapse
Affiliation(s)
- Shiqin Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Na Deng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Leyao Fang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Junxi Shen
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Ying Cai
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Xie S, Fang L, Deng N, Shen J, Tan Z, Peng X. Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Med Sci Monit 2024; 30:e944185. [PMID: 38898640 PMCID: PMC11305074 DOI: 10.12659/msm.944185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sishen Pills (SSPs) are commonly used to treat diarrhea with kidney-yang deficiency syndrome. Trimethylamine-N-oxide (TMAO) is produced through the metabolism of gut microbiota and can participate in diarrhea in kidney-yang deficiency syndrome by mediating the "gut-kidney axis" to transmit inflammatory factors. This study combined network pharmacology with animal experiments to explore whether SSPs can treat diarrhea with kidney-yang deficiency syndrome by affecting the interaction between TMAO and gut microbiota. MATERIAL AND METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was constructed by using adenine and Folium sennae decoction, and SSP decoction was used for treatment. This study utilized network pharmacology to predict the potential mechanisms of SSPs in treating diarrhea with kidney-yang deficiency syndrome. 16S rRNA high-throughput sequencing was used to analyze gut mucosal microbial characteristics. ELISA was used to measure TMAO, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), interleukin-1ß (IL-1ß), and transforming growth factor-ß1 (TGF-ß1) levels. We performed Masson and immunohistochemical (Occludin, ZO-1) staining of kidney and small intestinal tissues. The fluorescein diacetate (FDA) hydrolysis spectrophotometric method was used to assess the microbial activity in contents of the small intestine. RESULTS Network pharmacology analysis revealed that SSPs can modulate 108 target points involved in the development of diarrhea, including IL-1ß and TNF. The experimental results demonstrated that SSP decoction significantly improved the general behavioral profiles of the mice, and also reduced TMAO, NLRP3, IL-1ß, and TGF-ß1 levels (P<0.05). Correlation analysis revealed significant positive correlations between TMAO concentrations and NLRP3, IL-1ß and TGF-ß1 levels (P<0.05). Pathological analysis revealed improvements in renal fibrosis and increased expression of the Occludin and ZO-1 proteins in intestinal tissue. In the SSP group, there was a significant increase in microbial activity (P<0.001). According to the sequencing results, the characteristic bacteria of the SSP and NR groups included Succinatimonas hippei, uncultured Solirubrobacter sp., and Clostridium tyrobutyricum. Furthermore, TMAO, NLRP3, IL-1ß, and TGF-ß1 were significantly positively correlated (P<0.05) with Succinatimonas hippei and Clostridium tyrobutyricum. By modulating Firmicutes, Succinatimonas hippei, and Clostridium tyrobutyricum, SSP decoction lowers TMAO levels to alleviate diarrhea with kidney-yang deficiency syndrome. CONCLUSIONS TMAO likely plays a significant role in the "gut-kidney axis" of diarrhea with kidney-yang deficiency syndrome. By adjusting gut microbiota to reduce the inflammatory response that is transmitted through the "gut-kidney axis" as a result of elevated TMAO levels, SSP decoction can alleviate diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Shiqin Xie
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Leyao Fang
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Na Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Junxi Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
10
|
Shen Y, Fan J, Liu S, Tao L, Yang Q, Shen X. Exploring pathogenesis and biomarkers through establishment of a rat model of male infertility with liver depression and kidney deficiency. PLoS One 2024; 19:e0303189. [PMID: 38768165 PMCID: PMC11104592 DOI: 10.1371/journal.pone.0303189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.
Collapse
Affiliation(s)
- Ying Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The National Engineering Research Center of Miao’s Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Yunyan District, Guiyang, Guizhou, China
| | - Jian Fan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| | - Shaobo Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| | - Qingbo Yang
- The National Engineering Research Center of Miao’s Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Yunyan District, Guiyang, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Guo M, Fang L, Chen M, Shen J, Tan Z, He W. Dysfunction of cecal microbiota and CutC activity in mice mediating diarrhea with kidney-yang deficiency syndrome. Front Microbiol 2024; 15:1354823. [PMID: 38500584 PMCID: PMC10944907 DOI: 10.3389/fmicb.2024.1354823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE Previous studies have indicated that diarrhea with kidney-yang deficiency syndrome leads to a disorder of small intestine contents and mucosal microbiota. However, the relationship of TMA-lyase (CutC) activity and TMAO with diarrhea with kidney-yang deficiency syndrome remains unexplored. Therefore, this study explores the relationship between cecal microbiota and choline TMA-lyase (CutC) activity, as well as the correlation between trimethylamine oxide (TMAO), inflammatory index, and CutC activity. METHOD Twenty SPF-grade male KM mice were randomly divided into the normal group (CN) and the diarrhea model group (CD). Diarrhea mouse models were established by adenine combined with Folium sennae administration. CutC activity, TMAO, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were detected, and the cecal content microbiota was sequenced. RESULT After 14 days, diarrhea occurred in the CD group. Compared with the CN group, there was no significant change in the activity of CutC in the small intestine of the CD group, while the activity of CutC in the cecum was significantly increased, and the levels of TMAO, IL-6, and TNF-α showed a significant increase. The Chao1 index, Observed_species index, Shannon index, and Simpson index all exhibited a decreasing trend. The main changes at the bacterial genus level were Alistipes, Enterorhabdus, Desulfovibrio, Bacteroides, Candidatus_Saccharimonas, and [Ruminococcus]_torques_group. The results of LEfSe analysis, random forest analysis and ROC curve analysis revealed Paludicola, Blautia, Negativibacillus, Paraprevotella, Harryflintia, Candidatus_Soleaferrea, Anaerotruncus, Oscillibacter, Colidextribacter, [Ruminococcus]_torques_group, and Bacteroides as characteristic bacteria in the CD group. Correlation analysis showed a significant negative correlation between cecal CutC activity and Ligilactobacillus, and a significant positive correlation with Negativibacillus and Paludicola. The level of TMAO was significantly positively correlated with CutC activity and IL-6. CONCLUSION Diarrhea with kidney-yang deficiency syndrome significantly affects the physiological status, digestive enzyme activity, CutC activity, TMAO levels, and inflammatory response in mice. Additionally, there are changes in the composition and function of cecal microbiota, indicating an important impact of diarrhea with kidney-yang deficiency syndrome on the host intestinal microbiota balance. The occurrence of diarrhea with kidney-yang deficiency syndrome may be associated with dysbiosis of intestinal microbiota, increased CutC activity, elevated TMAO levels, and heightened inflammatory factor levels.
Collapse
Affiliation(s)
- Mingmin Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Leyao Fang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Meili Chen
- Changsha Hospital of Traditional Chinese Medicine, Changsha, China
| | - Junxi Shen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wenzhi He
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Zhou M, Li X, Wang X, Deng N, Cai Y, Tan Z. The dysfunction in intestinal microorganisms and enzyme activity as significant contributors to diarrhea with kidney-yang deficiency syndrome. Front Microbiol 2024; 14:1324938. [PMID: 38264481 PMCID: PMC10803573 DOI: 10.3389/fmicb.2023.1324938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECT To investigate the pathogenesis of diarrhea with kidney-yang deficiency syndrome by examining characteristic changes in intestinal microorganisms, enzyme activities, oxidative stress, and metabolism indices. METHODS Twenty mice were randomly and equally divided into control group (NC) and model group (NM). Mice in NM group received adenine suspension at a dosage of 50 mg/(kg⋅day) by gavage, 0.4 mL/time, once a day for 14 days, and Folium sennae decoction at a dosage of 10 g/(kg⋅day) by gavage, 0.4 mL/time, once a day for 7 days, starting on 8th day. Mice in NC group were administered an equivalent amount of sterile water by gavage once a day for 7 days, and twice a day from the 8th day. After modeling, assessments encompassed microbial culture, organ index calculation, microbial and enzyme activity detection, malondialdehyde (MDA) content determination, superoxide dismutase (SOD) activity, blood biochemical tests, and observation of kidney tissue pathological changes. RESULTS The results showed that in NM group, a reduction in the number of Lactobacillus and Bifidobacteria was noted, accompanied by an increase in the number of bacteria and E. coli. Xylanase activity in the intestinal contents and mucosa, protease activity in the intestinal mucosa, and intestinal mucosa microbial activity were diminished. Conversely, the activities of amylase, sucrase, and lactase increased in intestinal mucosa. Additionally, there was an elevation in the level of MDA. Renal tubular dilatation and inflammatory cell infiltration were observed in the renal interstitium. CONCLUSION These dysfunctions in intestinal microorganisms and enzyme activities suggest potential involvement in diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Mengsi Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoya Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, Yunnan University of Traditional Chinese Medicine, Kunming, Yunan, China
| | - Xuehong Wang
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Huang W, Wang J, Kuang M, Xiao Z, Fan B, Sun G, Tan Z. Exploring global research status and trends in anti-obesity effects of traditional Chinese medicine through intestinal microbiota: a bibliometric study. Front Cell Infect Microbiol 2023; 13:1271473. [PMID: 38045760 PMCID: PMC10690589 DOI: 10.3389/fcimb.2023.1271473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The intestinal microbiota (IM) has been found to contribute to metabolic disorders that lead to excessive fat accumulation, systemic and chronic low-grade inflammation, and insulin resistance in the host. Current research highlights a pivotal interaction between IM and traditional Chinese medicine (TCM) in mitigating obesity-related diseases. Undeniably, IM stands as a central focus in TCM research aimed at preventing and treating obesity. Therefore, tracing the progress and trends in this field can offer valuable references and insights for future studies. METHODS On June 17, 2023, we conducted a literature search on the topic of "IM and obesity in TCM" spanning the period from 2009 to 2023. We extracted the primary information of the publications, which includes complete records and reference citations, from the Science Citation Index Expanded (SCI-E) within the Web of Science Core Collection (WoSCC). To visualize and analyze the literature, we utilized CiteSpace and VOSviewer for bibliometric analysis. RESULTS During the past fifteen years, a rapid increase in the number of publications has been observed. The cooperative networks demonstrate China, Beijing University of Chinese Medicine, and Food & Function as the most active countries, organizations, and journals in this field, respectively. Liu Bin has contributed the most publications. A paper by Xu Jia, published in 2014, holds the highest Local Citation Score (LCS). Analyses of keyword co-occurrence and reference co-citation indicate that the research hotspots of IM and obesity in TCM are primarily focused on the metabolic benefits driven by endogenous functional metabolic molecules generated by TCM regulation of IM. Other focal points include the mechanism by which TCM regulates IM to restore the intestinal mucosal barrier This is a provisional file, not the final typeset article, and manages the gut-organ axis, the metabolic advantages of acupuncture's regulation of IM, and the process by which Chinese medicine small molecules transform IM. CONCLUSION This research offers a comprehensive understanding of the current status, hotspots, and trends in global TCM research. Additionally, it provides a comprehensive summary and exploration of the latest advancements in this field, thereby emphasizing the essence of TCM more effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Guixiang Sun
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
14
|
Liu B, Zhang Z, Liu X, Hu W, Wu W. Gastrointestinal Fermentable Polysaccharide Is Beneficial in Alleviating Loperamide-Induced Constipation in Mice. Nutrients 2023; 15:4364. [PMID: 37892439 PMCID: PMC10610129 DOI: 10.3390/nu15204364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the role of gastrointestinal (GI) polysaccharide fermentation in alleviating constipation, two polysaccharide fractions were isolated from a soluble fiber extract with determined anti-constipation activity: a 2.04 kDa neutral fraction (SSP-1) contained 99.29% glucose, and a 41.66 kDa acidic fraction (SSP-2) contained 63.85% uronic acid. After mice were given loperamide for 14 d to induce constipation, the GI transit rate increased significantly in the SSP-1 group (p < 0.05) but not in the SSP-2 group. The stool weight in the SSP-2 group was significantly higher than that in SSP-1 (383.60 mg vs. 226.23 mg) (p < 0.05). Both SSP-1 and SSP-2 groups had significantly increased serum gastrin and motilin levels (p < 0.05) and changes in their fecal short-chain fatty acid (SCFA) profiles, while SSP-1 showed better fermentation properties than SSP-2 in terms of statistically higher fecal contents of acetic acid and total SCFAs (p < 0.05). Bioinformatic analysis indicated that SSP-1 upregulated bacteria such as Oscillibacter to improve SCFA metabolism and stimulate GI hormone secretion, while SSP-2 had less influence on the gut microbiota. These results suggest that the neutral polysaccharide with superior GI fermentation properties exerted beneficial effects on constipation, while the less fermentable pectic fraction might act as a stool-bulking agent.
Collapse
Affiliation(s)
- Buyu Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Weiwei Hu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| |
Collapse
|
15
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
16
|
Liu J, Qiao B, Cai Y, Tan Z, Deng N. Diarrhea accompanies intestinal inflammation and intestinal mucosal microbiota dysbiosis during fatigue combined with a high-fat diet. BMC Microbiol 2023; 23:151. [PMID: 37231328 PMCID: PMC10210424 DOI: 10.1186/s12866-023-02896-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE It was reported fatigue or a high-fat diet triggers diarrhea, and intestinal microbiota may play central roles in diarrhea. Therefore, we investigated the association between the intestinal mucosal microbiota and the intestinal mucosal barrier from fatigue combined with a high-fat diet. METHOD This study divided the Specific pathogen-free (SPF) male mice into the normal group (MCN) and the standing united lard group (MSLD). The MSLD group stood on water environment platform box for 4 h/day for 14 days, and 0.4 mL lard was gavaged from day 8, twice daily for 7 days. RESULT After 14 days, Mice in the MSLD group showed diarrhea symptoms. The pathological analysis showed structural damage to the small intestine in the MSLD group, with an increasing trend of interleukin-6 (IL-6) and IL-17, and inflammation accompanied by structural damage to the intestine. Fatigue combined with a high-fat diet considerably decreased Limosilactobacillus vaginalis and Limosilactobacillus reuteri, and among them, Limosilactobacillus reuteri positively associated with Muc2 and negatively with IL-6. CONCLUSION The interactions between Limosilactobacillus reuteri and intestinal inflammation might be involved in the process of intestinal mucosal barrier impairment in fatigue combined with high-fat diet-induced diarrhea.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
17
|
Shang H, Zhang L, Xiao T, Zhang L, Ruan J, Zhang Q, Liu K, Yu Z, Ni Y, Wang B. Study on the differences of gut microbiota composition between phlegm-dampness syndrome and qi-yin deficiency syndrome in patients with metabolic syndrome. Front Endocrinol (Lausanne) 2022; 13:1063579. [PMID: 36440222 PMCID: PMC9682026 DOI: 10.3389/fendo.2022.1063579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MS) is a group of complex medical conditions that can lead to serious cardiovascular and cerebrovascular diseases. According to the theory of traditional Chinese medicine (TCM), MS can be divided into two main subtypes termed 'phlegm-dampness syndrome' (TSZE) and 'qi-yin deficiency syndrome' (QYLX). At present, the research into intestinal microbiota of different TCM syndromes of MS and its association with clinical manifestation is lacking. MATERIALS AND METHODS Using 16S rRNA sequencing, we performed a cross-sectional analysis of human gut microbiota between two different TCM syndromes (QYLX and TSZE, n=60) of MS, and their differences with healthy participants (n=30). RESULTS We found that the QYLX and TSZE groups differ from the healthy control group in the overall gut microbiota composition, and some specific microbial taxa and functional pathways. Moreover, significantly differentially abundant taxa and distinct BMI-correlated taxa were observed between QYLX and TSZE groups, suggesting the potential contribution of gut microbiota to the distinction between the two TCM syndromes. The predicted functional profiles also showed considerable differences, especially pathways related to amino acid metabolism and lipopolysaccharide synthesis. CONCLUSION Our study highlights the gut microbiota's contribution to the differentiation between two TCM syndromes of MS and may provide the rationale for adopting different microbiota-directed treatment strategies for different TCM syndromes of MS in the future.
Collapse
Affiliation(s)
- Haonan Shang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Tiegang Xiao
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ruan
- Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Zhang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Liu
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhonghai Yu, ; Yueqiong Ni, ; Bing Wang,
| | - Yueqiong Ni
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- *Correspondence: Zhonghai Yu, ; Yueqiong Ni, ; Bing Wang,
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhonghai Yu, ; Yueqiong Ni, ; Bing Wang,
| |
Collapse
|