1
|
Semerci AB, Tekbaba AG, Sevindik TO. The effect of different culture mediums on the morphological characters, growth parameters, chemical contents, and biological activities of Kamptonema formosum (Bory ex Gomont) Strunecký, Komárek & J. Smarda. Braz J Microbiol 2025; 56:741-756. [PMID: 40131633 PMCID: PMC12095700 DOI: 10.1007/s42770-025-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
In this study, the effects of different culture mediums (Spirulina, BG11 and F/2) on Kamptonema formosum strain were evaluated in terms of morphological characters and colonial structure, growth parameters (OD, chlorophyll-a), pH, dry biomass, biochemical content (total proteins, total carbohydrates, total lipids, and total phenolic contents) and biological activities (antioxidant and antibacterial activity). Based on the light and electron microscope observations, variations were detected in the morphological characters and colonial structures of the Cyanobacteria grown in the three culture mediums. K. formosum grown in Spirulina medium developed more than those grown in BG11 and F/2 mediums according to OD560, OD680, chlorophyll-a, and pH. The dry biomass, total protein, and total lipid content of the strain produced in the Spirulina medium were found to be significantly higher (p < 0.05) compared to other mediums. The methanolic extract obtained from the biomass grown in Spirulina medium showed strong antibacterial activity on Staphylococcus aureus (16.5 mm) and Enterecoccus faecalis (15 mm). In addition, the highest DPPH scavenging activity and total phenolic content were determined in the extract obtained from the Spirulina medium, while the lowest was detected in the extract obtained from the F/2 medium. As a result, K. formosum developed in Spirulina medium proved to be more effective in obtaining biomass, revealing biochemical contents and pharmacological activities.
Collapse
Affiliation(s)
- Alican Bahadir Semerci
- Faculty of Science, Department of Biology, Sakarya University, Sakarya, 54050, Türkiye.
- Ereğli Vocational School of Health Services, Necmettin Erbakan University, Konya, 42310, Türkiye.
| | - Ayşe Gül Tekbaba
- Faculty of Science, Department of Biology, Sakarya University, Sakarya, 54050, Türkiye
| | - Tuğba Ongun Sevindik
- Faculty of Science, Department of Biology, Sakarya University, Sakarya, 54050, Türkiye
| |
Collapse
|
2
|
Bellido-Pedraza CM, Torres MJ, Llamas A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024; 13:1137. [PMID: 38994989 PMCID: PMC11240456 DOI: 10.3390/cells13131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.
Collapse
Affiliation(s)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain; (C.M.B.-P.); (M.J.T.)
| |
Collapse
|
3
|
Zheng S, Sun S, Zou S, Song J, Hua L, Chen H, Wang Q. Effects of culture temperature and light regimes on biomass and lipid accumulation of Chlamydomonas reinhardtii under carbon-rich and nitrogen-limited conditions. BIORESOURCE TECHNOLOGY 2024; 399:130613. [PMID: 38513922 DOI: 10.1016/j.biortech.2024.130613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study investigated the impacts of various culture temperatures and light regimes on growth and biochemical constituents of Chlamydomonas reinhardtii under carbon-supply and nitrogen-limited conditions to improve oil production in algal cells. Results displayed that under a 30 ℃ and 150 μE/m2/s regime, there was a significant increase in biomass, total lipids, and lipid productivity. Specifically, these parameters reached 1.83 g/L, 36.25 %, and 130.73 mg/L/d, respectively. Remarkably, prolonging the photoperiod further enhanced the aforementioned three parameters, reaching peak levels of 1.92 g/L, 41.10 %, and 157.54 mg/L/d, respectively, recorded at a 24/0h photoperiod. Compared with cultures grown under normal conditions, these values displayed increments of 1.21-fold, 74.88 %, and 3.01-fold, respectively. Additionally, under optimal conditions, the soluble sugar content reached 79.72 mg/g, and the biodiesel properties were improved. These findings indicate that moderately increasing temperature, light intensity, and photoperiod could achieve the co-production of biomass, lipids, and sugars in C. reinhardtii.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiamei Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lan Hua
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Wang Y, Hu Y, Mo J, Yan Wong T, Liu J, Alessandro P, Zhong Tang B, Wang WX, Yan N. Bioprospecting of Chlamydomonas reinhardtii for boosting biofuel-related products production based on novel aggregation-induced emission active extracellular polymeric substances nanoprobes. BIORESOURCE TECHNOLOGY 2024; 399:130636. [PMID: 38548032 DOI: 10.1016/j.biortech.2024.130636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Biofuel production from microalgae has been greatly restricted by low biomass productivity and long-term photosynthetic efficacy. Here, a novel strategy for selecting high-growing, stress-resistant algal strains with high photosynthetic capacity was proposed based on biocompatible extracellular polymeric substances (EPS) probes with aggregation-induced emission (AIE) properties. Specifically, AIE active EPS probes were synthesized for in-situ long-term monitoring of the EPS productivity at different algal growth stages. By coupling the AIE-based fluorescent techniques, algal cells were classified into four diverse populations based on their chlorophyll and EPS signals. Mechanistic studies on the sorted algal cells revealed their remarkable stress resistance and high expression of cell division, biopolymer production and photosynthesis-related genes. The sorted and subcultured algal cells consistently exhibited relatively higher growth rates and photosynthetic capacities, resulting in an increased (1.2 to 1.8-fold) algal biomass production, chlorophyll, and lipids. This study can potentially open new strategies to boost microalgal-based biofuel production.
Collapse
Affiliation(s)
- Yan Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Parodi Alessandro
- Scientific Center for Translation Medicine, Sirius University of Science and Technology,354340 Sochi, Russia
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| | - Neng Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
5
|
Wagner H, Schad A, Höhmann S, Briol TA, Wilhelm C. Carbon and energy balance of biotechnological glycolate production from microalgae in a pre-industrial scale flat panel photobioreactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:42. [PMID: 38486283 PMCID: PMC10941469 DOI: 10.1186/s13068-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
Glycolate is produced by microalgae under photorespiratory conditions and has the potential for sustainable organic carbon production in biotechnology. This study explores the glycolate production balance in Chlamydomonas reinhardtii, using a custom-built 10-L flat panel bioreactor with sophisticated measurements of process factors such as nutrient supply, gassing, light absorption and mass balances. As a result, detailed information regarding carbon and energy balance is obtained to support techno-economic analyses. It is shown how nitrogen is a crucial element in the biotechnological process and monitoring nitrogen content is vital for optimum performance. Moreover, the suitable reactor design is advantageous to efficiently adjust the gas composition. The oxygen content has to be slightly above 30% to induce photorespiration while maintaining photosynthetic efficiency. The final volume productivity reached 27.7 mg of glycolate per litre per hour, thus, the total process capacity can be calculated to 13 tonnes of glycolate per hectare per annum. The exceptional volume productivity of both biomass and glycolate production is demonstrated, and consequently can achieve a yearly CO2 sequestration rate of 35 tonnes per hectare. Although the system shows such high productivity, there are still opportunities to enhance the achieved volume productivity and thus exploit the biotechnological potential of glycolate production from microalgae.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Antonia Schad
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Sonja Höhmann
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
6
|
Liu C, Guo H, Zhao X, Zou B, Sun T, Feng J, Zeng Z, Wen X, Chen J, Hu Z, Lou S, Li H. Overexpression of 18S rRNA methyltransferase CrBUD23 enhances biomass and lutein content in Chlamydomonas reinhardtii. Front Bioeng Biotechnol 2023; 11:1102098. [PMID: 36815903 PMCID: PMC9935685 DOI: 10.3389/fbioe.2023.1102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Post-transcriptional modification of nucleic acids including transfer RNA (tRNA), ribosomal RNA (rRNA) and messenger RNA (mRNA) is vital for fine-tunning of mRNA translation. Methylation is one of the most widespread post-transcriptional modifications in both eukaryotes and prokaryotes. HsWBSCR22 and ScBUD23 encodes a 18S rRNA methyltransferase that positively regulates cell growth by mediating ribosome maturation in human and yeast, respectively. However, presence and function of 18S rRNA methyltransferase in green algae are still elusive. Here, through bioinformatic analysis, we identified CrBUD23 as the human WBSCR22 homolog in genome of the green algae model organism Chlamydonomas reinhardtii. CrBUD23 was a conserved putative 18S rRNA methyltransferase widely exited in algae, plants, insects and mammalians. Transcription of CrBUD23 was upregulated by high light and down-regulated by low light, indicating its role in photosynthesis and energy metabolism. To characterize its biological function, coding sequence of CrBUD23 fused with a green fluorescence protein (GFP) tag was derived by 35S promoter and stably integrated into Chlamydomonas genome by glass bead-mediated transformation. Compared to C. reinhardtii wild type CC-5325, transgenic strains overexpressing CrBUD23 resulted in accelerated cell growth, thereby leading to elevated biomass, dry weight and protein content. Moreover, overexpression of CrBUD23 increased content of photosynthetic pigments but not elicit the activation of antioxidative enzymes, suggesting CrBUD23 favors growth and proliferation in the trade-off with stress responses. Bioinformatic analysis revealed the G1177 was the putative methylation site in 18S rRNA of C. reinhardtii CC-849. G1177 was conserved in other Chlamydonomas isolates, indicating the conserved methyltransferase activity of BUD23 proteins. In addition, CrTrm122, the homolog of BUD23 interactor Trm112, was found involved in responses to high light as same as CrBUD23. Taken together, our study revealed that cell growth, protein content and lutein accumulation of Chlamydomonas were positively regulated by the 18S rRNA methyltransferase CrBUD23, which could serve as a promising candidate for microalgae genetic engineering.
Collapse
Affiliation(s)
- Chenglong Liu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haoze Guo
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinmei Zhao
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bingxi Zou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ting Sun
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinwei Feng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiyong Zeng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueer Wen
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Chen
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Sulin Lou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Hui Li, ; Sulin Lou,
| | - Hui Li
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Hui Li, ; Sulin Lou,
| |
Collapse
|