1
|
Zali F, Absalan A, Bahramali G, Mousavi Nasab SD, Esmaeili F, Ejtahed HS, Nasli-Esfahani E, Siadat SD, Pasalar P, Emamgholipour S, Razi F. Alterations of the gut microbiota in patients with diabetic nephropathy and its association with the renin-angiotensin system. J Diabetes Metab Disord 2025; 24:69. [PMID: 39989880 PMCID: PMC11842656 DOI: 10.1007/s40200-025-01579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Objective Type 2 Diabetes Mellitus (T2DM) is a global health concern, with complications such as diabetic nephropathy (DN) affecting 16.6% of patients and contributing to end-stage renal failure. Emerging research suggests that gut microbial communities may influence DN progression, potentially through mechanisms involving the renin-angiotensin system (RAS). This study aimed to evaluate changes in specific microbial genera in individuals with T2DM, both with and without DN, and to explore their associations with renal function markers and RAS activation. Methods A total of 120 participants were categorized into three groups: healthy controls, T2DM without DN, and T2DM with DN. Microbial abundances of genera including Escherichia, Prevotella, Bifidobacterium, Lactobacillus, Roseburia, Bacteroides, Faecalibacterium, and Akkermansia were quantified using qPCR targeting the bacterial 16 S rRNA gene. Gene expression levels of RAS-associated markers (ACE, AGT1R, AT2R, and Ang II) and inflammation-related genes (TNF-α, TLR4) were analyzed in peripheral blood mononuclear cells via qPCR. Results The study identified significant alterations in microbial composition. Genera such as Faecalibacterium, Akkermansia, Roseburia (butyrate producers), and Bifidobacterium (a potential probiotic) were markedly reduced in T2DM and DN groups compared to controls. Increased mRNA expression of RAS-related genes, including ACE, AGT1R, and Ang II, was observed in these groups. We also foun correlations between altered microbial genera, RAS gene expression, and clinical markers of renal dysfunction. Conclusion The findings suggest that specific microbial genera may influence the pathogenesis of DN through RAS activation and inflammatory pathways. These insights highlight potential therapeutic targets for mitigating DN progression in T2DM patients.
Collapse
Affiliation(s)
- Fatemeh Zali
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorrahim Absalan
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis, AIDS and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Dawood Mousavi Nasab
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parvin Pasalar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang X, Lin T, Lin Y, Xu C, Ma K, Zhang C, Ji F, Mahsa GC, Rui X, Li W. Chemical composition and in vitro intestinal probiotic properties analysis of exopolysaccharides from screened Streptococcus thermophilus 90301. Int J Biol Macromol 2025; 311:143882. [PMID: 40319952 DOI: 10.1016/j.ijbiomac.2025.143882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
A strain of Streptococcus thermophilus 90301, characterized by robust growth and high exopolysaccharide (EPS) production, was selected. Following isolation and purification, two EPS components, EPS-1 and EPS-2, were obtained. The analysis revealed that EPS-1 was composed of mannose, rhamnose, glucosamine, glucose, and galactose with molar ratios of 0.94:0.09:0.11:1.00:0.16, whereas EPS-2 was composed of mannose, ribose, glucose, and galactose with molar ratios of 15.11:0.26:1.00:0.38; respectively. The average molecular weights were determined to be 2.31 × 105 Da for EPS-1 and 2.41 × 105 Da for EPS-2. Furthermore, the prebiotic potential of the two fractions (EPS-1 and EPS-2) was investigated through in vitro simulation of human fecal fermentation digestion. Both EPS-1 and EPS-2 were not digested by the digestive fluids and were able to significantly modulate the composition of the gut microbiota. Additionally, they enhanced the gut microbiota's ability to produce short-chain fatty acids. These findings provide some basis for the functional application of polysaccharide components extracted from S. thermophilus 90301 as a potential prebiotic.
Collapse
Affiliation(s)
- Xiaochan Wang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tao Lin
- Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, PR China
| | - Yihan Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjing 301617, PR China
| | - Chang Xu
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Vassallo GA, Dionisi T, De Vita V, Augello G, Gasbarrini A, Pitocco D, Addolorato G. The role of fecal microbiota transplantation in diabetes. Acta Diabetol 2025:10.1007/s00592-025-02508-0. [PMID: 40252102 DOI: 10.1007/s00592-025-02508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/29/2025] [Indexed: 04/21/2025]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a potential therapeutic strategy for modulating gut dysbiosis in diabetes mellitus. This review critically evaluates preclinical and clinical evidence on FMT in type 1 (T1D) and type 2 diabetes (T2D). Studies suggest that FMT can restore microbial diversity, improve glycemic control, and modulate immune responses, with varying effects across diabetes subtypes. In T1D, preclinical models demonstrate that FMT influences regulatory T-cell expansion and β-cell preservation, though clinical translation remains limited. In T2D, FMT has shown transient improvements in insulin sensitivity, with sustained effects observed only in patients with specific microbiome signatures. However, heterogeneity in patient responses, donor variability, and methodological limitations complicate its clinical application. This review highlights the interplay between FMT, immune modulation, and microbial metabolism, advocating for phenotype-stratified trials and multi-omics integration to enhance therapeutic precision.
Collapse
Affiliation(s)
| | - Tommaso Dionisi
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Vittorio De Vita
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Augello
- Department of Internal Medicine, Barone Lombardo Hospital, Canicattì, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Institute of Endocrinology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Addolorato
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
4
|
Chen Y, Yang H, Xu Z, Qu H, Liu H. Dendrobium officinale leaf phenolic extracts alleviate diabetes mellitus in mice via modulating metabolism and reshaping gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40156225 DOI: 10.1002/jsfa.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/08/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder posing a significant public health challenge. Dendrobium officinale is a valuable edible-medicinal homologous plant. Phenolic extracts from fermented D. officinale leaves (DOLP) demonstrate a hypoglycemic effect. However, the effects of DOLP on physiological metabolism and gut microbiota under diabetic conditions remain unknown. RESULTS Untargeted metabolomics analysis revealed that DOLP reversed 98 significantly differential metabolites (SDMs) in diabetic mice. Indoxyl sulfate and palmitoyl sphingomyelin were identified as the primary candidate biomarkers associated with the hypoglycemic effect. KEGG pathway enrichment analysis underscored the significance of arginine and proline metabolism, ascorbate and aldarate metabolism, and fatty acid metabolism in the regulatory effects of DOLP. Furthermore, DOLP reversed the dysbiosis of the gut microbiota in diabetic mice, significantly influencing the relative abundance of the genera Intestinimonas, GCA_900066575, Muribaculum, and Enterorhabdus. These differential genera exhibited various correlations with SDMs, including l-hydroxyarginine, γ-guanidinobutyrate, l-threonate, d-galactarate, l-ascorbic acid, palmitic acid, cis-9-palmitoleic acid, octadecanoic acid, and oleic acid. CONCLUSION The protective effect of DOLP against diabetes mellitus is closely linked to its regulation of physiological metabolism and gut microbiota. DOLP may serve as a promising agent for the prevention and treatment of diabetes mellitus. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhexuan Xu
- Zhejiang Yiming Food Co., Ltd, Wenzhou, China
| | - Hang Qu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hui Liu
- Zhejiang Yiming Food Co., Ltd, Wenzhou, China
| |
Collapse
|
5
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
6
|
Huang Y, Zhao P, Zhang X, Fu H, Fu C. Uncovering the pharmacological mechanisms of Patchouli essential oil for treating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118737. [PMID: 39182705 DOI: 10.1016/j.jep.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pogostemonis Herba has long been used in traditional Chinese medicine to treat inflammatory disorders. Patchouli essential oil (PEO) is the primary component of Pogostemonis Herba, and it has been suggested to offer curative potential when applied to treat ulcerative colitis (UC). However, the pharmacological mechanisms of PEO for treating UC remain to be clarified. AIM OF THE STUDY To elucidate the pharmacological mechanisms of PEO for treating UC. METHODS AND RESULTS In the present study, transcriptomic and network pharmacology approaches were combined to clarify the mechanisms of PEO for treating UC. Our results reveal that rectal PEO administration in UC model mice significantly alleviated symptoms of UC. In addition, PEO effectively suppressed colonic inflammation and oxidative stress. Mechanistically, PEO can ameliorate UC mice by modulating gut microbiota, inhibiting inflammatory targets (OPTC, PTN, IFIT3, EGFR, and TLR4), and inhibiting the PI3K-AKT pathway. Next, the 11 potential bioactive components that play a role in PEO's anti-UC mechanism were identified, and the therapeutic efficacy of the pogostone (a bioactive component) in UC mice was partially validated. CONCLUSION This study highlights the mechanisms through which PEO can treat UC, providing a rigorous scientific foundation for future efforts to develop and apply PEO for treating UC.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Hao Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
7
|
Soria-Utrilla V, Sasso CV, Romero-Zerbo SY, Adarve-Castro A, López-Urdiales R, Herranz-Antolín S, García-Almeida JM, García-Malpartida K, Ferrer-Gómez M, Moreno-Borreguero A, Luengo-Pérez LM, Álvarez-Hernández J, Aragón-Valera C, Ocón-Bretón MJ, García-Manzanares Á, Bretón-Lesmes I, Serrano-Aguayo P, Pérez-Ferre N, López-Gómez JJ, Olivares-Alcolea J, Moreno-Martínez M, Tejera-Pérez C, García-Arias S, Abad-González ÁL, Alhambra-Expósito MR, Zugasti-Murillo A, Parra-Barona J, Torrejón-Jaramillo S, Abuin J, Fernández-García JC, Olveira G. Biomarkers of oxidation, inflammation and intestinal permeability in persons with diabetes mellitus with parenteral nutrition: A multicenter randomized trial. Clin Nutr 2025; 44:155-164. [PMID: 39672082 DOI: 10.1016/j.clnu.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/14/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND AIMS Parenteral nutrition (PN) composition could play a role in the management of systemic inflammatory response and intestinal barrier disruption. We aimed to evaluate changes in biomarkers of inflammation, oxidative status and intestinal permeability in patients with type 2 diabetes mellitus (T2DM) who received different PN lipid formulas. METHODS This was a prospective study, including 94 patients with T2DM who received omega (n)-3 polyunsaturated fatty acids (PUFA)-enriched PN, a mixture of medium and long chain triglycerides (MCT/LCT) PN, or an olive oil-based PN. Serum levels of biomarkers of oxidative status, intestinal permeability and inflammation biomarkers were determined at day 1 and day 5 after PN initiation. Registered under ClinicalTrials.gov Identifier no. NCT02706119. RESULTS At day 5 after the onset of PN, the MCT/LCT group had a significant reduction of 2 proinflammatory cytokines [interleukin (IL)-15, IL-17A], elevation of the anti-inflammatory cytokine IL-13 and increase of zonulin and indoxylsulfate. The olive oil group showed a statistically significant reduction of 5 proinflammatory cytokines [IL-1β, IL-17A, IL-6, cytokine-leukemia inhibitory factor (LIF) and tumor necrosis factor alpha (TNF-α)] and reduced concentrations of the anti-inflammatory cytokine IL-1RA, while the n-3 PUFA-enriched group presented a statistically significant reduction of 8 proinflammatory cytokines (interferon-gamma, IL-1β, IL-15, IL-17A, IL-6, LIF, monocyte chemoattractant protein 1, and TNF-α). In the between-group comparisons, indoxylsulfate significantly increased in the MCT/LCT group compared to the n-3 PUFA-enriched group, while 8-isoprostane and indoxylsulfate significantly increased in the MCT/LCT group compared to the other groups and superoxide dismutase significantly decreased in the MCT/LCT group compared to the other groups. CONCLUSION In patients with T2DM, PN lipid composition exerts a profound impact on proinflammatory, prooxidative and intestinal permeability biomarkers.
Collapse
Affiliation(s)
- Virginia Soria-Utrilla
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | - Corina Verónica Sasso
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | - Silvana Yanina Romero-Zerbo
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Human Physiology, Faculty of Medicine, University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Málaga, Spain.
| | - Antonio Adarve-Castro
- Department of Radiology, Hospital Universitario Virgen de la Victoria, Málaga, Spain.
| | - Rafael López-Urdiales
- Department of Endocrinology and Nutrition, Hospital Universitario Bellvitge, Barcelona, Spain.
| | - Sandra Herranz-Antolín
- Department of Endocrinology and Nutrition, Hospital Universitario de Guadalajara, Guadalajara, Spain.
| | | | - Katherine García-Malpartida
- Department of Endocrinology and Nutrition, Hospital Universitario Doctor Peset, Valencia, Spain; School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón, Spain.
| | - Mercedes Ferrer-Gómez
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
| | - Alicia Moreno-Borreguero
- Department of Endocrinology and Nutrition, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain.
| | | | - Julia Álvarez-Hernández
- Department of Endocrinology and Nutrition, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain.
| | - Carmen Aragón-Valera
- Department of Endocrinology and Nutrition, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| | - María Julia Ocón-Bretón
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.
| | - Álvaro García-Manzanares
- Department of Endocrinology and Nutrition, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - Irene Bretón-Lesmes
- Department of Endocrinology and Nutrition, Hospital Universitario Gregorio Marañón, Madrid, Spain.
| | - Pilar Serrano-Aguayo
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen del Rocío, Sevilla, Spain.
| | - Natalia Pérez-Ferre
- Department of Endocrinology and Nutrition, Hospital Universitario Clínico San Carlos, Madrid, Spain.
| | - Juan José López-Gómez
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
| | - Josefina Olivares-Alcolea
- Department of Endocrinology and Nutrition, Hospital Universitario Son Espases, Palma de Mallorca, Spain.
| | - Macarena Moreno-Martínez
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Jaén, Jaén, Spain.
| | - Cristina Tejera-Pérez
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Ferrol, A Coruña, Spain; Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Sara García-Arias
- Department of Endocrinology and Nutrition, Hospital El Bierzo, Ponferrada, León, Spain.
| | - Ángel Luis Abad-González
- Department of Endocrinology and Nutrition, Hospital General Universitario Doctor Balmis, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain.
| | - María Rosa Alhambra-Expósito
- Department of Endocrinology and Nutrition, Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica translacional (IMIBIC), Córdoba, Spain.
| | - Ana Zugasti-Murillo
- Department of Endocrinology and Nutrition, Hospital Universitario de Navarra, Pamplona, Spain.
| | - Juan Parra-Barona
- Department of Endocrinology and Nutrition, Hospital de Mérida, Mérida, Spain.
| | - Sara Torrejón-Jaramillo
- Department of Endocrinology and Nutrition, Hospital de Sant Joan Despí Moisès Broggi, Barcelona, Spain.
| | - José Abuin
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | - Gabriel Olveira
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Málaga, Spain.
| |
Collapse
|
8
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. The gut-brain-metabolic axis: exploring the role of microbiota in insulin resistance and cognitive function. Front Microbiol 2024; 15:1463958. [PMID: 39659426 PMCID: PMC11628546 DOI: 10.3389/fmicb.2024.1463958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
The gut-brain-metabolic axis has emerged as a critical area of research, highlighting the intricate connections between the gut microbiome, metabolic processes, and cognitive function. This review article delves into the complex interplay between these interconnected systems, exploring their role in the development of insulin resistance and cognitive decline. The article emphasizes the pivotal influence of the gut microbiota on central nervous system (CNS) function, demonstrating how microbial colonization can program the hypothalamic-pituitary-adrenal (HPA) axis for stress response in mice. It further elucidates the mechanisms by which gut microbial carbohydrate metabolism contributes to insulin resistance, a key factor in the pathogenesis of metabolic disorders and cognitive impairment. Notably, the review highlights the therapeutic potential of targeting the gut-brain-metabolic axis through various interventions, such as dietary modifications, probiotics, prebiotics, and fecal microbiota transplantation (FMT). These approaches have shown promising results in improving insulin sensitivity and cognitive function in both animal models and human studies. The article also emphasizes the need for further research to elucidate the specific microbial species and metabolites involved in modulating the gut-brain axis, as well as the long-term effects and safety of these therapeutic interventions. Advances in metagenomics, metabolomics, and bioinformatics are expected to provide deeper insights into the complex interactions within the gut microbiota and their impact on host health. Overall, this comprehensive review underscores the significance of the gut-brain-metabolic axis in the pathogenesis and treatment of metabolic and cognitive disorders, offering a promising avenue for the development of novel therapeutic strategies targeting this intricate system.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Alireza Afshar
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
9
|
Shen X, Guo G, Feng G, Wang Z. Effects of Different Carbohydrate Content Diet on Gut Microbiota and Aortic Calcification in Diabetic Mice. Diabetes Metab Syndr Obes 2024; 17:2327-2346. [PMID: 38881695 PMCID: PMC11178077 DOI: 10.2147/dmso.s456571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Vascular calcification is a major cause of cardiovascular accidents in patients with type 2 diabetes mellitus. This study aimed to investigate the impact of carbohydrates on gut microbiota and aortic calcification in diabetic ApoE-/- mice. Methods The diabetic ApoE-/- mice were randomly divided into 4 groups: ketogenic diet group, low carbohydrate diet group, medium carbohydrate diet group, and high carbohydrate diet group. The mice were fed continuously for 6 months, with blood glucose, blood ketone and body weight monitored monthly. Lipid metabolism indicators and inflammatory factors were detected using ELISA. The intestinal barrier, atherosclerotic lesion areas, and vascular calcifications were analyzed based on their morphology. Gut microbiota was analyzed using 16S rRNA genes. Results We found that ketogenic diet played some roles improving glucose, lipid metabolism, and inflammation. Ketogenic diet could improve the intestinal barrier to some extent and increase intestinal bacteria. Compared to the other three groups, the relative abundance of genus Allobaculum, species Blautia producta and Clostridium Ramosum in the ketogenic diet group was significantly increased (P <0.05), which has protective effects in diabetic ApoE-/- mice. Conclusion Ketogenic diet could delay the onset of aortic atherosclerosis, aortic calcification and improve intestinal barrier function in diabetic ApoE-/- mice.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Ge Guo
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Guoquan Feng
- Imaging Department, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, People's Republic of China
| |
Collapse
|
10
|
Ma S, Wang Y, Ji X, Dong S, Wang S, Zhang S, Deng F, Chen J, Lin B, Khan BA, Liu W, Hou K. Relationship between gut microbiota and the pathogenesis of gestational diabetes mellitus: a systematic review. Front Cell Infect Microbiol 2024; 14:1364545. [PMID: 38868299 PMCID: PMC11168118 DOI: 10.3389/fcimb.2024.1364545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Gestational diabetes mellitus (GDM) is a form of gestational diabetes mellitus characterized by insulin resistance and abnormal function of pancreatic beta cells. In recent years, genomic association studies have revealed risk and susceptibility genes associated with genetic susceptibility to GDM. However, genetic predisposition cannot explain the rising global incidence of GDM, which may be related to the increased influence of environmental factors, especially the gut microbiome. Studies have shown that gut microbiota is closely related to the occurrence and development of GDM. This paper reviews the relationship between gut microbiota and the pathological mechanism of GDM, in order to better understand the role of gut microbiota in GDM, and to provide a theoretical basis for clinical application of gut microbiota in the treatment of related diseases. Methods The current research results on the interaction between GDM and gut microbiota were collected and analyzed through literature review. Keywords such as "GDM", "gut microbiota" and "insulin resistance" were used for literature search, and the methodology, findings and potential impact on the pathophysiology of GDM were systematically evaluated. Results It was found that the composition and diversity of gut microbiota were significantly associated with the occurrence and development of GDM. Specifically, the abundance of certain gut bacteria is associated with an increased risk of GDM, while other changes in the microbiome may be associated with improved insulin sensitivity. In addition, alterations in the gut microbiota may affect blood glucose control through a variety of mechanisms, including the production of short-chain fatty acids, activation of inflammatory pathways, and metabolism of the B vitamin group. Discussion The results of this paper highlight the importance of gut microbiota in the pathogenesis of GDM. The regulation of the gut microbiota may provide new directions for the treatment of GDM, including improving insulin sensitivity and blood sugar control through the use of probiotics and prebiotics. However, more research is needed to confirm the generality and exact mechanisms of these findings and to explore potential clinical applications of the gut microbiota in the management of gestational diabetes. In addition, future studies should consider the interaction between environmental and genetic factors and how together they affect the risk of GDM.
Collapse
Affiliation(s)
- Sheng Ma
- Anhui Province Maternity & Child Health Hospital, Hefei, Anhui, China
| | - Yuping Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaoxia Ji
- Nursing Department, Shantou Central Hospital, Shantou, Guangdong, China
| | - Sunjuan Dong
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shengnan Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuo Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Feiying Deng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jingxian Chen
- Shantou University Medical College, Shantou, Guangdong, China
| | - Benwei Lin
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Barkat Ali Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
11
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
12
|
Subramanian SK, Brahmbhatt B, Bailey-Lundberg JM, Thosani NC, Mutha P. Lifestyle Medicine for the Prevention and Treatment of Pancreatitis and Pancreatic Cancer. Diagnostics (Basel) 2024; 14:614. [PMID: 38535034 PMCID: PMC10968821 DOI: 10.3390/diagnostics14060614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2025] Open
Abstract
The incidence of pancreatitis and pancreatic cancer is on the upswing in the USA. These conditions often lead to higher healthcare costs due to the complex nature of diagnosis and the need for specialized medical interventions, surgical procedures, and prolonged medical management. The economic ramification encompasses direct healthcare expenses and indirect costs related to productivity losses, disability, and potential long-term care requirements. Increasing evidence underscores the importance of a healthy lifestyle in preventing and managing these conditions. Lifestyle medicine employs evidence-based interventions to promote health through six key pillars: embracing a whole-food, plant-predominant dietary pattern; regular physical activity; ensuring restorative sleep; managing stress effectively; removing harmful substances; and fostering positive social connections. This review provides a comprehensive overview of lifestyle interventions for managing and preventing the development of pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Sruthi Kapliyil Subramanian
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| | - Bhaumik Brahmbhatt
- Mayo Clinic, Division of Gastroenterology and Hepatology, Jacksonville, FL 32224, USA;
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA;
| | - Nirav C. Thosani
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| | - Pritesh Mutha
- Center for Interventional Gastroenterology at UTHealth (iGUT), Section of Endoluminal Surgery and Interventional Gastroenterology, Division of Elective General Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX 77030, USA; (S.K.S.); (P.M.)
| |
Collapse
|
13
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Gao W, Han Y, Chen L, Tan X, Liu J, Xie J, Li B, Zhao H, Yu S, Tu H, Feng B, Yang F. Fusion data from FT-IR and MALDI-TOF MS result in more accurate classification of specific microbiota. Analyst 2023; 148:5650-5657. [PMID: 37800908 DOI: 10.1039/d3an01108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Microbes are usually present as a specific microbiota, and their classification remains a challenge. MALDI-TOF MS is particularly successful in library-based microbial identification at the species level as it analyzes the molecular weight of peptides and ribosomal proteins. FT-IR allows more accurate classification of bacteria at the subspecies level due to the high sensitivity, specificity and repeatability of FT-IR signals from bacteria, which is not achievable with MALDI-TOF MS. Previous studies have shown that more accurate identification results can be obtained by the fusion of FT-IR and MALDI-TOF MS spectral data. Here, we constructed 20 groups of model microbiota samples and used FT-IR, MALDI-TOF MS, and their fusion data to classify them. Hierarchical clustering analysis (HCA) showed that the classification accuracy of FT-IR, MALDI-TOF MS, and the fusion data was 85%, 90%, and 100%, respectively. These results indicate that both FT-IR and MALDI-TOF MS can effectively classify specific microbiota, and the fusion of their spectral data could improve the classification accuracy. The FT-IR and MALDI-TOF MS data fusion strategy may be a promising technology for specific microbiota classification.
Collapse
Affiliation(s)
- Wenjing Gao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ying Han
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | | | - Xue Tan
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Jieyou Liu
- Zhuhai DL Biotech Co., Ltd, Zhuhai, Guangdong 519041, China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Bin Li
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Huilin Zhao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Bin Feng
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
15
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
16
|
Chen L, Gao W, Tan X, Han Y, Jiao F, Feng B, Xie J, Li B, Zhao H, Tu H, Yu S, Wang L. MALDI-TOF MS Is an Effective Technique To Classify Specific Microbiota. Microbiol Spectr 2023; 11:e0030723. [PMID: 37140390 PMCID: PMC10269913 DOI: 10.1128/spectrum.00307-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
MALDI-TOF MS is well-recognized for single microbial identification and widely used in research and clinical fields due to its specificity, speed of analysis, and low cost of consumables. Multiple commercial platforms have been developed and approved by the U.S. Food and Drug Administration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been used for microbial identification. However, microbes can present as a specific microbiota, and detection and classification remain a challenge. Here, we constructed several specific microbiotas and tried to classify them using MALDI-TOF MS. Different concentrations of nine bacterial strains (belonging to eight genera) constituted 20 specific microbiotas. Using MALDI-TOF MS, the overlap spectrum of each microbiota (MS spectra of nine bacterial strains with component percentages) could be classified by hierarchical clustering analysis (HCA). However, the real MS spectrum of a specific microbiota was different than that of the overlap spectrum of component bacteria. The MS spectra of specific microbiota showed excellent repeatability and were easier to classify by HCA, with an accuracy close to 90%. These results indicate that the widely used MALDI-TOF MS identification method for individual bacteria can be expanded to classification of microbiota. IMPORTANCE MALDI-TOF MS can be used to classify specific model microbiota. The actual MS spectrum of the model microbiota was not a simple superposition of every single bacterium in a certain proportion but had a specific spectral fingerprint. The specificity of this fingerprint can enhance the accuracy of microbiota classification.
Collapse
Affiliation(s)
- Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Xue Tan
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Ying Han
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Fu Jiao
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Bin Li
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huilin Zhao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| |
Collapse
|
17
|
Bagyánszki M, Bódi N. Key elements determining the intestinal region-specific environment of enteric neurons in type 1 diabetes. World J Gastroenterol 2023; 29:2704-2716. [PMID: 37274063 PMCID: PMC10237112 DOI: 10.3748/wjg.v29.i18.2704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Diabetes, as a metabolic disorder, is accompanied with several gastrointestinal (GI) symptoms, like abdominal pain, gastroparesis, diarrhoea or constipation. Serious and complex enteric nervous system damage is confirmed in the background of these diabetic motility complaints. The anatomical length of the GI tract, as well as genetic, developmental, structural and functional differences between its segments contribute to the distinct, intestinal region-specific effects of hyperglycemia. These observations support and highlight the importance of a regional approach in diabetes-related enteric neuropathy. Intestinal large and microvessels are essential for the blood supply of enteric ganglia. Bidirectional morpho-functional linkage exists between enteric neurons and enteroglia, however, there is also a reciprocal communication between enteric neurons and immune cells on which intestinal microbial composition has crucial influence. From this point of view, it is more appropriate to say that enteric neurons partake in multidirectional communication and interact with these key players of the intestinal wall. These interplays may differ from segment to segment, thus, the microenvironment of enteric neurons could be considered strictly regional. The goal of this review is to summarize the main tissue components and molecular factors, such as enteric glia cells, interstitial cells of Cajal, gut vasculature, intestinal epithelium, gut microbiota, immune cells, enteroendocrine cells, pro-oxidants, antioxidant molecules and extracellular matrix, which create and determine a gut region-dependent neuronal environment in diabetes.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
18
|
Bica IC, Pietroșel VA, Salmen T, Diaconu CT, Fierbinteanu Braticevici C, Stoica RA, Suceveanu AI, Pantea Stoian A. The Effects of Cardioprotective Antidiabetic Therapy on Microbiota in Patients with Type 2 Diabetes Mellitus-A Systematic Review. Int J Mol Sci 2023; 24:ijms24087184. [PMID: 37108347 PMCID: PMC10138454 DOI: 10.3390/ijms24087184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As the pathophysiologic mechanisms of type 2 diabetes mellitus (T2DM) are discovered, there is a switch from glucocentric to a more comprehensive, patient-centered management. The holistic approach considers the interlink between T2DM and its complications, finding the best therapies for minimizing the cardiovascular (CV) or renal risk and benefitting from the treatment's pleiotropic effects. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) fit best in the holistic approach because of their effects in reducing the risk of CV events and obtaining better metabolic control. Additionally, research on the SGLT-2i and GLP-1 RA modification of gut microbiota is accumulating. The microbiota plays a significant role in the relation between diet and CV disease because some intestinal bacteria lead to an increase in short-chain fatty acids (SCFA) and consequent positive effects. Thus, our review aims to describe the relation between antidiabetic non-insulin therapy (SGLT-2i and GLP-1 RA) with CV-proven benefits and the gut microbiota in patients with T2DM. We identified five randomized clinical trials including dapagliflozin, empagliflozin, liraglutide, and loxenatide, with different results. There were differences between empagliflozin and metformin regarding the effects on microbiota despite similar glucose control in both study groups. One study demonstrated that liraglutide induced gut microbiota alterations in patients with T2DM treated initially with metformin, but another failed to detect any differences when the same molecule was compared with sitagliptin. The established CV and renal protection that the SGLT-2i and GLP-1 RA exert could be partly due to their action on gut microbiota. The individual and cumulative effects of antidiabetic drugs on gut microbiota need further research.
Collapse
Affiliation(s)
- Ioana-Cristina Bica
- The Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Valeria-Anca Pietroșel
- Department of Diabetes, "Prof. Dr. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Teodor Salmen
- The Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Cosmina-Theodora Diaconu
- The Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | | | - Roxana-Adriana Stoica
- The Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Anca Pantea Stoian
- The Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X. Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 2023; 13:1100988. [PMID: 36726569 PMCID: PMC9884827 DOI: 10.3389/fmicb.2022.1100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.
Collapse
Affiliation(s)
- Jinghao Mu
- Department of Urology, Chinese PLA General Hospital, Beijing, China,Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhuan Guo
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Zhenhuan Guo, ✉
| | - Xiujun Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xuefei Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yunxing Fu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xianghui Li
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Fuli Zhu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guangyuan Hu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xia Ma
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,Xia Ma, ✉
| |
Collapse
|
20
|
Wang L, Wu D, Zhang Y, Li K, Wang M, Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front Microbiol 2023; 14:1113730. [PMID: 36876099 PMCID: PMC9978850 DOI: 10.3389/fmicb.2023.1113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Weining cattle is a precious species with high tolerance to cold, disease, and stress, and accounts for a large proportion of agricultural economic output in Guizhou, China. However, there are gaps in information about the intestinal flora of Weining cattle. In this study, high-throughput sequencing were employed to analyze the intestinal flora of Weining cattle (WN), Angus cattle (An), and diarrheal Angus cattle (DA), and explore the potential bacteria associated with diarrhea. We collected 18 fecal samples from Weining, Guizhou, including Weining cattle, Healthy Angus, and Diarrheal Angus. The results of intestinal microbiota analysis showed there were no significant differences in intestinal flora diversity and richness among groups (p > 0.05). The abundance of beneficial bacteria (Lachnospiraceae, Rikenellaceae, Coprostanoligenes, and Cyanobacteria) in Weining cattle were significantly higher than in Angus cattle (p < 0.05). The potential pathogens including Anaerosporobacter and Campylobacteria were enriched in the DA group. Furthermore, the abundance of Lachnospiraceae was very high in the WN group (p < 0.05), which might explain why Weining cattle are less prone to diarrhea. This is the first report on the intestinal flora of Weining cattle, furthering understanding of the relationship between intestinal flora and health.
Collapse
Affiliation(s)
- Lei Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Daoyi Wu
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingjin Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Jinping Ma
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| |
Collapse
|
21
|
Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022; 10:microorganisms10122507. [PMID: 36557760 PMCID: PMC9787832 DOI: 10.3390/microorganisms10122507] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary fiber is fermented by the human gut microbiota, producing beneficial microbial metabolites, such as short-chain fatty acids. Over the last few centuries, dietary fiber intake has decreased tremendously, leading to detrimental alternations in the gut microbiota. Such changes in dietary fiber consumption have contributed to the global epidemic of obesity, type 2 diabetes, and other metabolic disorders. The responses of the gut microbiota to the dietary changes are specific to the type, amount, and duration of dietary fiber intake. The intricate interplay between dietary fiber and the gut microbiota may provide clues for optimal intervention strategies for patients with type 2 diabetes and other noncommunicable diseases. In this review, we summarize current evidence regarding dietary fiber intake, gut microbiota modulation, and modification in human health, highlighting the type-specific cutoff thresholds of dietary fiber for gut microbiota and metabolic outcomes.
Collapse
|
22
|
Panjaitan NSD, Lestari CSW, Maha MS. Response to Article "Are There Differences in Gut Microbiome in Patients with Type 2 Diabetes Treated by Metformin or Metformin and Insulin?" [Letter]. Diabetes Metab Syndr Obes 2022; 15:3889-3890. [PMID: 36540346 PMCID: PMC9760064 DOI: 10.2147/dmso.s399410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Novaria Sari Dewi Panjaitan
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, Indonesia
- Correspondence: Novaria Sari Dewi Panjaitan, Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor No. 490, Km. 46, Cibinong, West Java, Indonesia, Email
| | - Christina Safira Whinie Lestari
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, Indonesia
| | - Masri Sembiring Maha
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, Indonesia
| |
Collapse
|