1
|
Yang Y, Zhang G, Pan J, Zhang Z, Mao N, Wang S, Sun Y. Characterization of fluoranthene degradation by the novel isolated Pseudomonas xizangensis S4 and its application potential immobilized in potassium humate-modified biochar. BIORESOURCE TECHNOLOGY 2025; 419:132066. [PMID: 39809384 DOI: 10.1016/j.biortech.2025.132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/12/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Enhanced microbial remediation represents a promising technique for the removal of polycyclic aromatic hydrocarbons (PAHs). However, high-efficiency remediation agents remain limited, including microbial resources and remediation materials. In this study, a novel strain of Pseudomonas xizangensis S4 was isolated from plateau lake sediment, exhibiting a fluoranthene degradation rate of 41.90 % at 50 ppm within 7 d. The key degradation genes identified through genomic and transcriptomic analyses included ndmC, dmpK, dmpB, and dmpH. The metabolites detected via GC-MS analysis were biphenyls, parabens, and phthalate esters. Based on the above results, the degradation mechanisms of fluoranthene were deduced. Furthermore, an efficient remediation agent was developed, utilizing potassium humate-modified biochar to immobilize bacterial cells. The developed remediation agent enhanced the removal efficiency by 16.71 % compared to the single strain. Thus, the application of potassium humate-modified biochar for the immobilization of P. xizangensis S4 represents a promising method for the remediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Guangming Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Jie Pan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Zhen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ning Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shiwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Yanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Luo W, Ping X, Zhou J, Gao S, Huang X, Song S, Xu J, He W. Alternaria alternata JTF001 Metabolites Recruit Beneficial Microorganisms to Reduce the Parasitism of Orobanche aegyptiaca in Tomato. BIOLOGY 2025; 14:116. [PMID: 40001884 PMCID: PMC11851891 DOI: 10.3390/biology14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Orobanche aegyptiaca is a holoparasitic weed that extracts water, nutrients, and growth regulators from host plants, leading to significant yield and quality losses. Biocontrol microbial metabolites have been shown to enhance plant resistance against parasitic plants, yet the underlying microbial mechanisms remain poorly understood. In this study, we investigated the role of Alternaria alternata JTF001 (J1) microbial metabolites in recruiting beneficial microbes to the tomato rhizosphere and promoting the establishment of a disease-suppressive microbiome. Pot experiments revealed that J1 metabolite application significantly reduced O. aegyptiaca parasitism. High-throughput sequencing of full-length 16S rRNA genes and ITS regions, along with in vitro culture assays, demonstrated an increase in the abundance of plant-beneficial bacteria, particularly Pseudomonas spp. The three candidate beneficial strains (zOTU_388, zOTU_533, and zOTU_2335) showed an increase of 5.7-fold, 5.4-fold, and 4.7-fold, respectively. These results indicate that J1 metabolites induce the recruitment of a disease-suppressive microbiome in tomato seedlings, effectively inhibiting O. aegyptiaca parasitism. Our findings suggest that microbial metabolites represent a promising strategy for managing parasitic plant infestations through microbial community modulation, offering significant implications for sustainable agricultural practices.
Collapse
Affiliation(s)
- Wenfang Luo
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| | - Xingxing Ping
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Junhui Zhou
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| | - Shuaijun Gao
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| | - Xin Huang
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| | - Suqin Song
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| | - Jianjun Xu
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| | - Wei He
- Xinjiang Key Laboratory of Agricultural Bio-Safety, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (W.L.); (J.Z.); (S.G.); (X.H.); (S.S.)
| |
Collapse
|
3
|
Misu IJ, Kayess MO, Siddiqui MN, Gupta DR, Islam MN, Islam T. Microbiome Engineering for Sustainable Rice Production: Strategies for Biofertilization, Stress Tolerance, and Climate Resilience. Microorganisms 2025; 13:233. [PMID: 40005600 PMCID: PMC11857137 DOI: 10.3390/microorganisms13020233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The plant microbiome, found in the rhizosphere, phyllosphere, and endosphere, is essential for nutrient acquisition, stress tolerance, and the overall health of plants. This review aims to update our knowledge of and critically discuss the diversity and functional roles of the rice microbiome, as well as microbiome engineering strategies to enhance biofertilization and stress resilience. Rice hosts various microorganisms that affect nutrient cycling, growth promotion, and resistance to stresses. Microorganisms carry out these functions through nitrogen fixation, phytohormone and metabolite production, enhanced nutrient solubilization and uptake, and regulation of host gene expression. Recent research on molecular biology has elucidated the complex interactions within rice microbiomes and the signalling mechanisms that establish beneficial microbial communities, which are crucial for sustainable rice production and environmental health. Crucial factors for the successful commercialization of microbial agents in rice production include soil properties, practical environmental field conditions, and plant genotype. Advances in microbiome engineering, from traditional inoculants to synthetic biology, optimize nutrient availability and enhance resilience to abiotic stresses like drought. Climate change intensifies these challenges, but microbiome innovations and microbiome-shaping genes (M genes) offer promising solutions for crop resilience. This review also discusses the environmental and agronomic implications of microbiome engineering, emphasizing the need for further exploration of M genes for breeding disease resistance traits. Ultimately, we provide an update to the current findings on microbiome engineering in rice, highlighting pathways to enhance crop productivity sustainably while minimizing environmental impacts.
Collapse
Affiliation(s)
- Israt Jahan Misu
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - Md. Omar Kayess
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - M. Nazrul Islam
- Centre for Plant and Soil Health, Regenerative Agri-Science Canada Inc., Winnipeg, MB R3T 5L2, Canada
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| |
Collapse
|
4
|
Luo X, Yan G, Wang Q, Xing Y. Community structure, diversity and function of endophytic and soil microorganisms in boreal forest. Front Microbiol 2024; 15:1410901. [PMID: 39417072 PMCID: PMC11480031 DOI: 10.3389/fmicb.2024.1410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Despite extensive studies on soil microbial community structure and functions, the significance of plant-associated microorganisms, especially endophytes, has been overlooked. To comprehensively anticipate future changes in forest ecosystem function under future climate change scenarios, it is imperative to gain a thorough understanding of the community structure, diversity, and function of both plant-associated microorganisms and soil microorganisms. Methods In our study, we aimed to elucidate the structure, diversity, and function of leaf endophytes, root endophytes, rhizosphere, and soil microbial communities in boreal forest. The microbial structure and composition were determined by high-throughput sequencing. FAPROTAX and FUNGuild were used to analyze the microbial functional groups. Results Our findings revealed significant differences in the community structure and diversity of fungi and bacteria across leaves, roots, rhizosphere, and soil. Notably, we observed that the endophytic fungal or bacterial communities associated with plants comprised many species distinct from those found in the soil microbial communities, challenging the assumption that most of endophytic fungal or bacterial species in plants originate from the soil. Furthermore, our results indicated noteworthy differences in the composition functional groups of bacteria or fungi in leaf endophytes, root endophytes, rhizosphere, and soil, suggesting distinct roles played by microbial communities in plants and soil. Discussion These findings underscore the importance of recognizing the diverse functions performed by microbial communities in both plant and soil environments. In conclusion, our study emphasizes the necessity of a comprehensive understanding of the structure and function microbial communities in both plants and soil for assessing the functions of boreal forest ecosystems.
Collapse
Affiliation(s)
- Xi Luo
- School of Life Sciences, Qufu Normal University, Qufu, China
- Library, Qufu Normal University, Qufu, China
| | - Guoyong Yan
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Qinggui Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Yajuan Xing
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
5
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Joubert PM, Krasileva KV. Distinct genomic contexts predict gene presence-absence variation in different pathotypes of Magnaporthe oryzae. Genetics 2024; 226:iyae012. [PMID: 38290434 PMCID: PMC10990425 DOI: 10.1093/genetics/iyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Fungi use the accessory gene content of their pangenomes to adapt to their environments. While gene presence-absence variation contributes to shaping accessory gene reservoirs, the genomic contexts that shape these events remain unclear. Since pangenome studies are typically species-wide and do not analyze different populations separately, it is yet to be uncovered whether presence-absence variation patterns and mechanisms are consistent across populations. Fungal plant pathogens are useful models for studying presence-absence variation because they rely on it to adapt to their hosts, and members of a species often infect distinct hosts. We analyzed gene presence-absence variation in the blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), and found that presence-absence variation genes involved in host-pathogen and microbe-microbe interactions may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features of presence-absence variation and observed that proximity to transposable elements, gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between presence-absence variation genes and conserved genes. We used these features to construct a model that was able to predict whether a gene is likely to experience presence-absence variation with high precision (86.06%) and recall (92.88%) in M. oryzae. Finally, we found that presence-absence variation genes in the rice and wheat pathotypes of M. oryzae differed in their number and their genomic context. Our results suggest that genomic and epigenomic features of gene presence-absence variation can be used to better understand and predict fungal pangenome evolution. We also show that substantial intra-species variation can exist in these features.
Collapse
Affiliation(s)
- Pierre M Joubert
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Xin H, Chen X, Ye Y, Liao Y, Luo H, Tang CY, Liu G. Enhanced metronidazole removal in seawater using a single-chamber bioelectrochemical system. WATER RESEARCH 2024; 252:121212. [PMID: 38320394 DOI: 10.1016/j.watres.2024.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
The aim of this study was to investigate the removal of metronidazole (MNZ) from seawater using a bioelectrochemical system (BES). Single-chamber BES (i.e., S-BES) and dual-chamber BES (i.e., D-BES) were constructed with carbon brush as the anode and cathode. With the inoculum of sea mud and 2 g/L of glucose as the substrate in seawater, S-BES and D-BES were acclimated to test the MNZ removal. Results showed that S-BES could remove almost 100 % of 200 mg/L MNZ within 120 h and remain stable within 10 cycles of operation (∼50 d) under the applied voltage of 0.8 V. The MNZ removal reached ∼100 % and 60.2 % in the cathodic and anodic chambers of D-BES fed by 100 mg/L MNZ under 0.8 V, respectively. The MNZ concentration of 200 mg/L significantly inhibited the sulfur metabolism, decreased the ratio of live to dead cells in the electrode biofilms, and thus reduced the SO42- removal in the S-BES. The MNZ degradation and S2- oxidation was mainly attributed to the cathodic and anodic biofilms of S-BES, respectively. Three degradation pathways of MNZ were proposed based on the identified intermediates and results of density functional theory calculations. The synergies among different genus species in the bacterial communities of biofilms, and between anodic and cathodic reactions could be responsible for the high performance of S-BES. Results from this study should be not only useful for the MNZ removal but also for effective MNZ inhibition of sulfate-reducing bacteria induced microbiologically influenced corrosion in seawater.
Collapse
Affiliation(s)
- Haoran Xin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xindi Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjun Liao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Xing J, Fan W, Wang J, Shi F. Variety-Driven Effect of Rhizosphere Microbial-Specific Recruitment on Drought Tolerance of Medicago ruthenica (L.). Microorganisms 2023; 11:2851. [PMID: 38137995 PMCID: PMC10745984 DOI: 10.3390/microorganisms11122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
As one of the environmental factors that seriously affect plant growth and crop production, drought requires an efficient but environmentally neutral approach to mitigate its harm to plants. Soil microbiomes can interact with plants and soil to improve the adverse effects of drought. Medicago ruthenica (L.) is an excellent legume forage with strong drought tolerance, but the key role of microbes in fighting drought stress remains unclear. What kind of flora plays a key role? Is the recruitment of such flora related to its genotype? Therefore, we selected three varieties of M. ruthenica (L.) for drought treatment, analyzed their growth and development as well as their physiological and biochemical characteristics, and performed 16S rRNA high-throughput sequencing analysis on their rhizosphere soils to clarify the variety-mediated response of rhizosphere bacteria to drought stress. It was found that among the three varieties of M. ruthenica (L.), Mengnong No.2, Mengnong No.1 and Zhilixing were subjected to drought stress and showed a reduction in plant height increment of 24.86%, 34.37%, and 31.97% and in fresh weight of 39.19%, 50.22%, and 41.12%, respectively, whereas dry weight was reduced by 23.26%, 26.10%, and 24.49%, respectively. At the same time, we found that the rhizosphere microbial community of Mengnong No. 2 was also less affected by drought, and it was able to maintain the diversity of rhizosphere soil microflora stable after drought stress, while Mennong No. 1 and Zhilixing were affected by drought stress, resulting in a decrease in rhizosphere soil bacterial community diversity indices to 92.92% and 82.27%, respectively. Moreover, the rhizosphere of Mengnon No. 2 was enriched with more nitrogen-fixing bacteria Rhizobium than the other two varieties of M. ruthenica (L.), which made it still have a good ability to accumulate aboveground biomass after drought stress. In conclusion, this study proves that the enrichment process of bacteria is closely related to plant genotype, and different varieties enrich different types of bacteria in the rhizosphere to help them adapt to drought stress, and the respective effects are quite different. Our results provide new evidence for the study of bacteria to improve the tolerance of plants to drought stress and lay a foundation for the screening and study mechanism of drought-tolerant bacteria in the future.
Collapse
Affiliation(s)
| | | | | | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (J.X.); (W.F.); (J.W.)
| |
Collapse
|
10
|
Nobarinezhad MH, Wallace LE. Fine-scale genetic structure in rhizosphere microbial communities associated with Chamaecrista fasciculata (Fabaceae). Ecol Evol 2023; 13:e10570. [PMID: 37753306 PMCID: PMC10518841 DOI: 10.1002/ece3.10570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Soil microbiota of the rhizosphere are an important extension of the plant phenotype because they impact the health and fitness of host plants. The composition of these communities is expected to differ among host plants due to influence by host genotype. Given that many plant populations exhibit fine-scale genetic structure (SGS), associated microbial communities may also exhibit SGS. In this study, we tested this hypothesis using Chamaecrista fasciculata, a legume species that has previously been determined to have significant SGS. We collected genetic data from prokaryotic and fungal rhizosphere communities in association with 70 plants in an area of ~400 square meters to investigate the presence of SGS in microbial communities. Bacteria of Acidobacteria, Protobacteria, and Bacteroidetes and fungi of Basidiomycota, Ascomycota, and Mortierellomycota were dominant members of the rhizosphere. Although microbial alpha diversity did not differ significantly among plants hosts, we detected significant compositional differences among the microbial communities as well as isolation by distance. The strongest factor associated with microbial distance was genetic distance of the other microbial community, followed by geographic distance, but there was not a significant association with plant genetic distance for either microbial community. This study further demonstrates the strong potential for spatial structuring of soil microbial communities at the smallest spatial scales and provides further insight into the complexity of factors that influence microbial composition in soils and in association with host plants.
Collapse
Affiliation(s)
| | - Lisa E. Wallace
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
11
|
Tie Z, Wang P, Chen W, Tang B, Yu Y, Liu Z, Zhao S, Khan FH, Zhang X, Xi H. Different responses of the rhizosphere microbiome to Verticillium dahliae infection in two cotton cultivars. Front Microbiol 2023; 14:1229454. [PMID: 37637103 PMCID: PMC10450913 DOI: 10.3389/fmicb.2023.1229454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Verticillium wilt is a disastrous disease caused by Verticillium dahliae that severely damages the production of cotton in China. Even under homogeneous conditions, the same cotton cultivar facing V. dahliae tends to either stay healthy or become seriously ill and die. This binary outcome may be related to the interactions between microbiome assembly and plant health. Understanding how the rhizosphere microbiome responds to V. dahliae infection is vital to controlling Verticillium wilt through the manipulation of the microbiome. In this study, we evaluated the healthy and diseased rhizosphere microbiome of two upland cotton cultivars that are resistant to V. dahliae, Zhong 2 (resistant) and Xin 36 (susceptible), using 16S rRNA and ITS high-throughput sequencing. The results showed that the healthy rhizosphere of both resistant cultivar and susceptible cultivar had more unique bacterial ASVs than the diseased rhizosphere, whereas fewer unique fungal ASVs were found in the healthy rhizosphere of resistant cultivar. There were no significant differences in alpha diversity and beta diversity between the resistant cultivar and susceptible cultivar. In both resistant cultivar and susceptible cultivar, bacterial genera such as Pseudomonas and Acidobacteria bacterium LP6, and fungal genera such as Cephalotrichum and Mortierella were both highly enriched in the diseased rhizosphere, and Pseudomonas abundance in diseased rhizospheres was significantly higher than that in the healthy rhizosphere regardless of the cultivar type. However, cultivar and V. dahliae infection can cause composition changes in the rhizosphere bacterial and fungal communities, especially in the relative abundances of core microbiome members, which varied significantly, with different responses in the two cotton cultivars. Analysis of co-occurrence networks showed that resistant cultivar has a more complex network relationship than susceptible cultivar in the bacterial communities, and V. dahliae has a significant impact on the bacterial community structure. These findings will further broaden the understanding of plant-rhizosphere microbiome interactions and provide an integrative perspective on the cotton rhizosphere microbiome, which is beneficial to cotton health and production.
Collapse
Affiliation(s)
- Zhanjiang Tie
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Peng Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Weijian Chen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Binghui Tang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, Xinjiang, China
| | - Yu Yu
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Zheng Liu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Sifeng Zhao
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Faisal Hayat Khan
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - XueKun Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Xi
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
12
|
Zhao L, Walkowiak S, Fernando WGD. Artificial Intelligence: A Promising Tool in Exploring the Phytomicrobiome in Managing Disease and Promoting Plant Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091852. [PMID: 37176910 PMCID: PMC10180744 DOI: 10.3390/plants12091852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
There is increasing interest in harnessing the microbiome to improve cropping systems. With the availability of high-throughput and low-cost sequencing technologies, gathering microbiome data is becoming more routine. However, the analysis of microbiome data is challenged by the size and complexity of the data, and the incomplete nature of many microbiome databases. Further, to bring microbiome data value, it often needs to be analyzed in conjunction with other complex data that impact on crop health and disease management, such as plant genotype and environmental factors. Artificial intelligence (AI), boosted through deep learning (DL), has achieved significant breakthroughs and is a powerful tool for managing large complex datasets such as the interplay between the microbiome, crop plants, and their environment. In this review, we aim to provide readers with a brief introduction to AI techniques, and we introduce how AI has been applied to areas of microbiome sequencing taxonomy, the functional annotation for microbiome sequences, associating the microbiome community with host traits, designing synthetic communities, genomic selection, field phenotyping, and disease forecasting. At the end of this review, we proposed further efforts that are required to fully exploit the power of AI in studying phytomicrobiomes.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|