1
|
Regnell O, Tesson SM. Total mercury and methylmercury in lake water in years before and after removal of mercury-polluted pulp fiber sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125011. [PMID: 39313123 DOI: 10.1016/j.envpol.2024.125011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
There is an elevated presence of mercury (Hg) in the biosphere because of anthropogenic activities. The resulting damage to ecosystems and human health increases dramatically when microorganisms produce highly toxic methylmercury (MeHg). Total Hg (THg), MeHg and ancillary water chemistry were measured in two connected lakes, separated by a short stream stretch, before (1996, 1998 and 2003) and after (2007, 2009 and 2010) the removal of Hg-polluted pulp fiber sediment. Over the study period, there was a decrease in sulfate in the surface water of both lakes, presumably because of declining atmospheric sulfate deposition. Together, the reductions in OM, sulfate, and Hg, resulted in decreased MeHg concentrations as well as decreased MeHg:THg ratios in the bottom water overlying the sediment. There was also a reduction in zooplankton MeHg and fish total Hg in both lakes. Multiple regressions, using the bottom water data before and after remediation from both lakes, indicated that both the yearly maximum MeHg concentration [MeHgmax] and MeHgmax:THg correlated positively with the simultaneously measured sulfate deficit (a proxy for microbial sulfate reduction) and inorganic Hg concentration (IHg = THg - MeHg). This may suggest that the removal of Hg and the decreased sulfate reduction not only led to a decrease in available Hg substrate for methylation but also disfavored the Hg methylation process. As opposed to sulfate deficit, other measurements reflecting heterotrophic microbial activity such as inorganic carbon (IC), ammonium (NH4+), and iron (Fe) did not show significant correlations with MeHg or MeHg:THg when the data from both lakes were combined.
Collapse
Affiliation(s)
- Olof Regnell
- Department of Biology/Aquatic Ecology, Lund University, SE-223 62, Lund, Sweden.
| | - SylvieV M Tesson
- Department of Biology/Aquatic Ecology, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
2
|
Feng M, Robinson S, Qi W, Edwards A, Stierli B, van der Heijden M, Frey B, Varliero G. Microbial genetic potential differs among cryospheric habitats of the Damma glacier. Microb Genom 2024; 10. [PMID: 39351905 PMCID: PMC11443553 DOI: 10.1099/mgen.0.001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.
Collapse
Affiliation(s)
- Maomao Feng
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Serina Robinson
- Department of Environmental Microbiology, Swiss Federal Research Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Marcel van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Plant-Soil Interactions, Agroscope, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
3
|
Hao X, Zhao Q, Zhou X, Huang Q, Liu YR. Labile carbon inputs boost microbial contribution to legacy mercury reduction and emissions from industry-polluted soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133122. [PMID: 38056276 DOI: 10.1016/j.jhazmat.2023.133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Soils is a crucial reservoir influencing mercury (Hg) emissions and soil-air exchange dynamics, partially modulated by microbial reducers aiding Hg reduction. Yet, the extent to which microbial engagements contribute to soil Hg volatilization remains largely unknown. Here, we characterized Hg-reducing bacterial communities in natural and anthropogenically perturbed soil environments and quantified their contribution to soil Hg(0) volatilization. Our results revealed distinct Hg-reducing bacterial compositions alongside elevated mercuric reductase (merA) gene abundance and diversity in soils adjacent to chemical factories compared to less-impacted ecosystems. Notably, solely industry-impacted soils exhibited increased merA gene abundance along Hg gradients, indicating microbial adaption to Hg selective pressure through quantitative changes in Hg reductase and genetic diversity. Microcosm studies demonstrated that glucose inputs boosted microbial involvement and induced 2-8 fold increments in cumulative Hg(0) volatilization in industry-impacted soils. Microbially-mediated Hg reduction contributed to 41.6% of soil Hg(0) volatilization in industry-impacted soils under 25% water-holding capacity and glucose input conditions over a 21-day incubation period. Alcaligenaceae, Moraxellaceae, Nitrosomonadaceae and Shewanellaceae were identified as potential contributors to Hg(0) volatilization in the soil. Collectively, our study provides novel insights into microbially-mediated Hg reduction and soil-air exchange processes, with important implications for risk assessment and management of industrial Hg-contaminated soils.
Collapse
Affiliation(s)
- Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinquan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Feng M, Varliero G, Qi W, Stierli B, Edwards A, Robinson S, van der Heijden MGA, Frey B. Microbial dynamics in soils of the Damma glacier forefield show succession in the functional genetic potential. Environ Microbiol 2023; 25:3116-3138. [PMID: 37688461 DOI: 10.1111/1462-2920.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Glacier retreat is a visible consequence of climate change worldwide. Although taxonomic change of the soil microbiomes in glacier forefields have been widely documented, how microbial genetic potential changes along succession is little known. Here, we used shotgun metagenomics to analyse whether the soil microbial genetic potential differed between four stages of soil development (SSD) sampled along three transects in the Damma glacier forefield (Switzerland). The SSDs were characterized by an increasing vegetation cover, from barren soil, to biological soil crust, to sparsely vegetated soil and finally to vegetated soil. Results suggested that SSD significantly influenced microbial genetic potential, with the lowest functional diversity surprisingly occurring in the vegetated soils. Overall, carbohydrate metabolism and secondary metabolite biosynthesis genes overrepresented in vegetated soils, which could be partly attributed to plant-soil feedbacks. For C degradation, glycoside hydrolase genes enriched in vegetated soils, while auxiliary activity and carbohydrate esterases genes overrepresented in barren soils, suggested high labile C degradation potential in vegetated, and high recalcitrant C degradation potential in barren soils. For N-cycling, organic N degradation and synthesis genes dominated along succession, and gene families involved in nitrification were overrepresented in barren soils. Our study provides new insights into how the microbial genetic potential changes during soil formation along the Damma glacier forefield.
Collapse
Affiliation(s)
- Maomao Feng
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Arwyn Edwards
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Serina Robinson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Marcel G A van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Plant-Soil Interactions, Agroscope, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
5
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|