1
|
Russo A, D'Alessandro A, Di Paola M, Cerasuolo B, Renzi S, Meriggi N, Conti L, Costa J, Pogni R, Martellini T, Cincinelli A, Ugolini A, Cavalieri D. On the role of bacterial gut microbiota from supralittoral amphipod Talitrus saltator (Montagu, 1808) in bioplastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179109. [PMID: 40086306 DOI: 10.1016/j.scitotenv.2025.179109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Despite the promise of a reduced environmental impact, bioplastics are subjected to dispersion and accumulation similarly to traditional plastics, especially in marine and coastal environments. The environmental impact of bioplastics is attracting increasing attention due to the growing market demand. The ability of the supralittoral amphipod Talitrus saltator to ingest and survive on pristine starch-based bioplastic has already been assessed. However, the involvement of the gut microbiota of this key coastal species in making bioplastics a dietary supplement, remains unknown. In this study, we investigated the modification of T. saltator gut microbiota following bioplastic ingestion and the effect of this change on the modification of their chemical composition. Groups of adult amphipods were fed with: 1 - two different kinds of starch-based bioplastic; 2 - a 50 %/50 % chitosan-starch mixture; and 3 - paper and dry-fish-food. Freshly collected, unfed individuals were used as control group. Faecal pellets from the amphipods were collected and characterized using ATR-FTIR spectroscopy. DNA was extracted from gut samples for metagenomic analysis. Spectroscopic investigation suggested a partial digestion of polysaccharide components in the experimental polymeric materials. The analysis of the gut microbiota revealed that bioplastic feeding induced modification of sandhopper's gut microbial communities, shifting the abundance of specific microbial genera already present in the gut, towards bacterial genera associated with plastic/bioplastic degradation, especially in groups fed with starch-based bioplastics. Overall, our results highlight the involvement of T. saltator's gut microbiota in bioplastic modification, providing new insights into the potential role of microbial consortia associated to sandhoppers in bioplastic management.
Collapse
Affiliation(s)
- Alessandro Russo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Aldo D'Alessandro
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Monica Di Paola
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Benedetta Cerasuolo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Renzi
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Luca Conti
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Jessica Costa
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Rebecca Pogni
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Tania Martellini
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandra Cincinelli
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alberto Ugolini
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Duccio Cavalieri
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy; CIB-Interuniversity Consortium for Biotechnologies, Via Flavia 23/1, 34148 Trieste, Italy.
| |
Collapse
|
2
|
Vargas-Estrada L, García-Depraect O, Zimmer J, Muñoz R. Analysis of biological treatment technologies, their present infrastructures and suitability for biodegradable food packaging - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124395. [PMID: 39933383 DOI: 10.1016/j.jenvman.2025.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been an increased demand for biodegradable plastics in the food packaging industry, especially for highly food soiled packaging items containing food/beverage solids that will not be recycled using a non-biological process. However, the increased usage of those materials have also raised concerns and confusion, as a major part of these biodegradable plastics are not effectively separated nor recycled. The lack of acceptance in recycling facilities, related to confusion with their conventional polymers counterparts, as well as short retention times of recycling facilities, often incompatible with the degradation kinetics of biodegradable plastics, stand as the major drawbacks for bioplastics treatment. Additionally, the presence of incompletely biodegraded bioplastics during biological treatments or in the final products i.e. compost or digestate, could lead to process failure or limit the commercialization of the compost. This work critically reviews the fundamentals of the biological treatments, anaerobic digestion and composting processes, and discusses the current strategies to improve their performance. In addition, this work summarizes the state-of-the-art knowledge and the impact of bioplastics on full-scale treatment plants. Finally, an overview of the current installed treatment capacity is given to show the areas of opportunity that can be improved and exploited to achieve a better waste management of biodegradable plastics.
Collapse
Affiliation(s)
- Laura Vargas-Estrada
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Octavio García-Depraect
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Johannes Zimmer
- Nestlé Research, Société des Produits Nestlé S.A., Route Du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
3
|
Shafana Farveen M, Muñoz R, Narayanan R, García-Depraect O. Batch and semi-batch anaerobic digestion of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) bioplastic: New kinetic, structural, microbiological and digestate phytotoxicity insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178794. [PMID: 39946898 DOI: 10.1016/j.scitotenv.2025.178794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
This study investigated the bioconversion of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) in batch and semi-batch anaerobic digestion systems, focusing not only on methane production and microbial community dynamics, but also on the structural changes that occur during degradation and the potential use of the resulting digestate as a soil enhancer. Both systems operated under mesophilic conditions (37 ± 2 °C) and stable pH (7.9 ± 0.2). The batch system achieved a methane yield of 550.5 ± 78.79 NmL CH₄/g VS added over 50 days, with a typical sigmoidal methane production pattern. A carbon mass balance analysis indicated a 96.09 % recovery, with 47.62 % of the carbon converted to methane. SEM, FTIR and XRD analyses of the partially degraded material showed that the anaerobic biodegradation of PHBH was characterized by surface erosion and weight loss, with minimal changes in crystallinity. Conversely, the adaptation of the microbial community to 93 days of continuous PHBH feeding allowed the achievement of a stable methane yield of 562.34 ± 44.97 NmL CH₄/g VS added, along with a corresponding volumetric methane production rate of 281.17 ± 22.48 NmL CH₄/L-d. Microbial community analysis, at pseudo-steady state, revealed the dominance of Methanosaeta, Anaerolineaceae, and Thermovirga in driving the anaerobic digestion of PHBH via acetoclastic methanogenesis. Despite high methane production efficiency, digestate toxicity tests using perennial ryegrass indicated phytotoxic effects on seed germination, highlighting the need for further investigation to characterize inhibitory compounds and develop mitigation strategies.
Collapse
Affiliation(s)
- Mohamed Shafana Farveen
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Genetic Engineering, College of Engineering & Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Raul Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rajnish Narayanan
- Department of Genetic Engineering, College of Engineering & Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Octavio García-Depraect
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
De Bernardi A, Bandini F, Marini E, Tagliabue F, Casucci C, Brunetti G, Vaccari F, Bellotti G, Tabaglio V, Fiorini A, Ilari A, Gnoffo C, Frache A, Taskin E, Rossa UB, Ricardo ESL, Martins AO, Duca D, Puglisi E, Pedretti EF, Vischetti C. Integrated assessment of the chemical, microbiological and ecotoxicological effects of a bio-packaging end-of-life in compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175403. [PMID: 39128510 DOI: 10.1016/j.scitotenv.2024.175403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemico-physical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome. The bioplastic residues did not influence the earthworms' fertility, but DNA damages were measured at the highest bioplastic dose tested. Furthermore bioplastic residues did not significantly affect the bacterial community during composting, but compost treated with 2 % bio-packaging exhibited greater variability in the fungal communities, including Mortierella, Mucor, and Alternaria genera, which can use bioplastics as a carbon source. Moreover, bioplastic residues influenced gut bacterial communities, with Paenibacillus, Bacillus, Rhizobium, Legionella, and Saccharimonadales genera being particularly abundant at 2 % bioplastic concentration. Higher concentrations affected microbial composition by favouring different genera such as Pseudomonas, Ureibacillus, and Streptococcus. For fungal communities, Pestalotiopsis sp. was found predominantly in earthworms exposed to 2 % bioplastic residues and is potentially linked to its role as a microplastics degrader. After composting, Attenuated Total Reflection analysis on bioplastic residues displayed evidence of ageing with the formation of hydroxyl groups and amidic groups after earthworm exposure.
Collapse
Affiliation(s)
- Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Bandini
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Enrica Marini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Tagliabue
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Gianluca Brunetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Future Industries Institute, University of South Australia, Mawson Lakes Boulevard, South Australia, SA 5095, Australia.
| | - Filippo Vaccari
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Alessio Ilari
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Chiara Gnoffo
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Alberto Frache
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università, 5, 39100 Bolzano-Bozen, Italy.
| | - Uberson Boaretto Rossa
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | - Elisângela Silva Lopes Ricardo
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | | | - Daniele Duca
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
5
|
Zaborowska M, Bernat K, Pszczółkowski B, Cydzik-Kwiatkowska A, Kulikowska D, Wojnowska-Baryła I. Timeframe of aerobic biodegradation of bioplastics differs under standard conditions and conditions simulating technological composting with biowaste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122399. [PMID: 39241591 DOI: 10.1016/j.jenvman.2024.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
To determine the actual timeframe of biodegradation, bioplastics (BPs) (based on polylactic acid (PLA), starch (FS), polybutylene succinate (PBS), cellulose (Cel)) were degraded with biowaste (B), which simulates real substrate technological conditions during composting. For comparison, standard conditions (with mature compost (C)) were also applied. The 90-day aerobic tests, both with C or B, were carried out at 58 ± 2 °C. This comparison enables understanding of how BPs behave in real substrate conditions and how C and B affect the time or completeness of degradation based on oxygen consumption (OC) for BPs, the ratio of OC to theoretical oxygen consumption (OC/Th-O2), and the decrease in volatile solids (VS). Additionally, for deeper insight into the biodegradation process, microscopic, microbial (based on 16S rDNA), FTIR, and mechanical (tensile strength, elongation at break) analyses were performed. There was no association between the initial mechanical properties of BPs and the time necessary for their biodegradation. BPs lost their mechanical properties and remained visible for a shorter time when degraded with C than with B. OC for Cel, FS, PLA, and PBS biodegradation was 1143, 1654, 1748, and 1211g O2/kg, respectively, which amounted to 83, 70, 69, and 60% of the theoretical OC (Th-O2), respectively. Intensive OC took place at the same time as an intensive decrease in VS content. With C, Cel was most susceptible to biodegradation (completely biodegrading within 11 days), and PLA was least susceptible (requiring 70 days for complete biodegradation). With B, however, the time required for biodegradation was generally longer, and the differences in the time needed for complete biodegradation were smaller, ranging from 45 d (FS) to 75 d (PLA). The use of C or B had the greatest effect on Cel biodegradation (10 d vs 62 d, respectively), and the least effect on PLA (70 d vs 75 d). Specific bacterial and fungal community structures were identified as potential BP biodegraders; the communities depended on the type of BPs and the substrate conditions. In conclusion, the time needed for biodegradation of these BPs varied widely depending on the specific bioplastic and the substrate conditions; the biodegradability decreased in the following order: Cel ≫ FS ≫ PBS ≫ PLA with C and FS ≫ Cel = PBS ≫ PLA with B. The biodegradability ranking of BPs with B was assumed to be ultimate as it simulates the real substrate conditions during composting. However, all of the BPs completely biodegraded in less than 90 days.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland.
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| | - Bartosz Pszczółkowski
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 11, Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| | - Dorota Kulikowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| | - Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| |
Collapse
|
6
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
7
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T. Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2216. [PMID: 36984096 PMCID: PMC10058929 DOI: 10.3390/ma16062216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions.
Collapse
|