1
|
Guha T, Biswas SM. Seed Endophytic Bacteria from Manilkara zapota L. and Their Influence as Rice Seed Priming Agents. Curr Microbiol 2025; 82:275. [PMID: 40317325 DOI: 10.1007/s00284-025-04253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
In recent years, seed endophytes have gained significant attention due to their impact on the ecology, health, and productivity of host plants. Extensive research is being conducted to explore novel endophytic bacteria for sustainable crop improvement. Manilkara zapota L. P. Royen (Sapotaceae) is a highly stress-tolerant tree widely cultivated in tropical countries, yet its associated endophytes remain unexplored. In this study, nine bacterial isolates were obtained from M. zapota seeds, of which three (LA2, LA4, and NS1) were selected based on their IAA production capability which ranged from 2.3, 6.34, and 16.1 µg mL-1, respectively. Identification through 16S rRNA sequencing confirmed LA2 as Pseudomonas rhodesiae, LA4 as Bacillus cereus, and NS1 as Enterobacter cloacae. All isolates exhibited nitrogen-fixing ability, while NS1 uniquely solubilized potassium and phosphorus with KSI and PSI value as 2.9 and 2.3, respectively. Further, the efficacy of the bacterial isolates in promoting rice seedling growth was evaluated, and novel bioformulation was prepared from the consortia of LA2 + LA4, LA2 + NS1, LA4 + NS1, and LA2 + LA4 + NS1. All the isolates and bioformulations were tested as biopriming agents. Rice seedling growth experiments revealed a significant increase in germination percentage, root length, and shoot length following biopriming with individual isolates and consortia. Among treatments, the LA2 + LA4 combination exhibited the highest growth promotion, with a root length increase of 2.1-fold and shoot length increase of 2.3-fold as compared to control. Thus, our results highlighted that bioprospecting microbes from M. zapota seeds can help in nutrient management and seedling establishment.
Collapse
Affiliation(s)
- Titir Guha
- Agricultural & Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
- Department of Biology, Indian Institute of Science Education and Research, Srinivasapuram, Yerpedu Mandal, Tirupati, 517619, Andhra Pradesh, India.
| | - Suparna Mandal Biswas
- Agricultural & Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
| |
Collapse
|
2
|
Pan L, Xu Q, Wei Q, Kong Y, Zhu L, Tian W, Yan Y, Wang H, Chi C, Zhang J, Zhu C. Isolation of the inorganic phosphorus-solubilizing bacteria Lysinibacillus sphaericus and assessing its role in promoting rice growth. Int Microbiol 2025; 28:119-131. [PMID: 38805155 DOI: 10.1007/s10123-024-00538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Soluble phosphorus scarcity severely limits plant growth and crop yield. In this study, a strain of inorganic phosphorus-solubilizing bacteria, Lysinibacillus sphaericus, was isolated from rice rhizosphere soil. The available phosphorus content in liquid inorganic phosphorus identification medium and in L. sphaericus-inoculated soil increased from 204.28 mg/L to 1124.68 mg/L and from 4.75 mg/kg to 7.04 mg/kg, respectively. The pH decreased significantly from 6.87 to 6.14. Incubation with L. sphaericus significantly increased malic and succinic acid content in the liquid inorganic phosphorus identification medium and increased acid phosphatase and alkaline phosphatase activity in the soil. Inoculation with L. sphaericus significantly increased rice growth, chlorophyll a/b content, and photosynthesis by increasing the soluble phosphorus content in the rice rhizosphere soil under phosphorus-deficient conditions. Further analysis revealed that L. sphaericus improved soil phosphorus release by decreasing soil pH and promoting acid phosphatase and alkaline phosphatase activity. This study supports the production of microbial fertilizers to improve rice yield in phosphorus-deficient conditions.
Collapse
Affiliation(s)
- Lin Pan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qingshan Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qianqian Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yali Kong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lianfeng Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wenhao Tian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yulian Yan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hangfeng Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chunxin Chi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Thakur R, Rahi P, Gulati A, Gulati A. Tea seedlings growth promotion by widely distributed and stress-tolerant PGPR from the acidic soils of the Kangra valley. BMC Microbiol 2025; 25:102. [PMID: 40021986 PMCID: PMC11869635 DOI: 10.1186/s12866-025-03811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
This is the first report of widespread and stress-tolerant PGPR from the tea rhizosphere of the Kangra valley. A total of 493 rhizobacteria were isolated from the major tea-growing regions of the Kangra valley. Molecular fingerprinting of 160 distinct morphotypes using ARDRA and ERIC techniques revealed intergenic and intragenic variability, resulting in the identification of 52 rRNA and 56 ERIC types belonging to 21 distantly related genera, identified by 16S rRNA gene sequencing. Bacillus constituted more than half of the genotypes, followed by Pseudomonas, Burkholderia, Lysinibacillus, Citrobacter, Enterobacter, and Paenibacillus. Bacillus altitudinis, B. cereus, B. megaterium, B. subtilis subsp. inaquosorum, B. methylotropicus, Pseudomonas frederiksbergensis, P. mohnii, and P. moreiii were found to be the most common in the tea rhizosphere across various locations. Quantitative assaying of 42 selected strains revealed significant variations in PGP activities ranging from 55-624 µg/ml for tri-calcium phosphate (TCP) solubilization, 4-3145 nM α-ketobutyrate h/mg/protein ACC-deaminase activity, 2-85 µg/ml IAA-like auxins production, and 2-83% siderophore production. Nine out of 42 PGPR also solubilized aluminium phosphate (Al-P) and iron phosphate (Fe-P). These efficient PGPR are suitable for application in tea soils, which are generally low in available phosphorus, a growth-limiting factor for tea cultivation. Five highly efficient PGPR also showed robust growth under different abiotic stresses under controlled conditions. Inoculum application of 5 efficient and abiotic stress tolerant PGPR showed a significant increment of 1.8-9.4%, 12-16.2%,18.1-30.3% and 21.4-39.2% in plant height, leaf number, fresh and dry weight of tea seedlings under the nursery conditions with 50% reduced NPK concentrations after one year of inoculations, respectively. These selected PGPR genotypes with multifarious PGP activities and natural ability to occur widely can be useful in developing plant microbial inoculants for improving tea productivity.
Collapse
Affiliation(s)
- Rishu Thakur
- Academy of Scientific and Innovative Research, New Delhi, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Praveen Rahi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Institut Pasteur du Cambodge, Phnom Penh, #5, Boulevard Monivong, Cambodia
| | - Ashu Gulati
- Academy of Scientific and Innovative Research, New Delhi, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Arvind Gulati
- Academy of Scientific and Innovative Research, New Delhi, India.
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
| |
Collapse
|
4
|
Jeon BJ, Park JS, Hong SC, Lee EH, Choi J, Kim JD. Plant growth-promoting effects of a novel Lelliottia sp. JS-SCA-14 and comparative genome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1484616. [PMID: 39659413 PMCID: PMC11628249 DOI: 10.3389/fpls.2024.1484616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Bacteria associated with plants play crucial roles in promoting plant growth and health by aiding in nutrient acquisition, including phosphorus. This study presents the isolation and genomic characterization of a potentially new bacterial strain, Lelliottia sp. JS-SCA-14, which exhibits significant plant growth-promoting effects through phosphorus solubilization. A comparative phylogenomic analysis of the complete genome of strain JS-SCA-14 and its closely related strains revealed a unique genomic profile, suggesting it could be a novel species. Genomic identity calculations indicated that JS-SCA-14 significantly deviates from strains belonging to closely related genera, such as Buttiauxella, Citrobacter, Enterobacter, Leclercia, and Lelliottia. A biochemical assay comparing JS-SCA-14 and a closely related strain, Lelliottia jeotgali PFL01T, showed differing patterns in carbon source utilization and enzyme activities. To assess the plant growth-promoting capabilities of strain JS-SCA-14, tests were conducted to evaluate its siderophore-producing and phosphate-solubilizing abilities. Seed germination assays demonstrated an improvement in germination, seedling length, and vigor compared to untreated controls. Notably, the phosphate-dissolving strain JS-SCA-14 led to a significant increase of 34.4% in fresh weight and 35.4% in dry weight of tomato plants compared to the negative control. These findings underscore the significant potential of strain JS-SCA-14 in solubilizing phosphate, thereby enhancing phosphorus availability in the rhizosphere and promoting plant growth and development. This study contributes to our understanding of plant-microbe interactions and suggests the potential application of strain JS-SCA-14 as a bioinoculant for sustainable agriculture and plant nutrient management strategies.
Collapse
Affiliation(s)
- Byeong Jun Jeon
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jin-Soo Park
- Natural Product Systems Biology Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Sung-Chul Hong
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan, Republic of Korea
| | - Eun Ha Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jaeyoung Choi
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jeong Do Kim
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| |
Collapse
|
5
|
Kshetri L, Kotoky R, Debnath S, Maheshwari DK, Pandey P. Shift in the soil rhizobacterial community for enhanced solubilization and bioavailability of phosphorus in the rhizosphere of Allium hookeri Thwaites, through bioaugmentation of phosphate-solubilizing bacteria. 3 Biotech 2024; 14:185. [PMID: 39077622 PMCID: PMC11283447 DOI: 10.1007/s13205-024-04026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Allium hookeri is an indigenous perennial herb known for its therapeutic properties. It's grown in the eastern Himalayas and East Asia, where it is used as a flavoring agent in local cuisines. This research aims to enhance soil phosphorus mobilization and promote A. hookeri growth using a consortium of phosphate-solubilizing bacteria (PSB). The synergistic effect of a bacterial consortium containing multiple PSBs (Arthrobacter luteolus and several Klebsiella spp.) combined with tricalcium phosphate (TCP), was investigated to enhance the growth of A. hookeri plants, and its influence on modulating the rhizosphere microbiome was also assessed. The greenhouse experiment revealed that the bacterial consortium with tricalcium phosphate (BTCP) treatment enhanced the dry shoot weight by 70%. Proteobacteria dominated the rhizosphere's microbiome in all treatments. BTCP treatment enhanced the relative abundance of several beneficial genera such Bacillus, Mesorhizobium, Pseudomonas, Ensifer, Hyphomicrobium, Planctomyces, and Bradyrhizobium. The augmentation of bacterial consortium increased P in shoots (4.36 ± 0.63 mg/g) and in roots (2.34 ± 0.27 mg/g), which was more than 500% higher as compared to the uninoculated control. Canonical correspondence analysis (CCA) indicated significant correlations (p ≤ 0.05) between phosphorus content in the shoot, fresh weight, and dry weight, with higher relative abundances of Bacteroidetes, Cyanobacteria, and Fibrobacteres. Functional genes related to siderophore biosynthesis, ABC transporters, phosphatenate, and phosphinate metabolism exhibited positive modulation, indicating higher relative abundances associated with the BTCP treatment. The findings demonstrate the crucial contribution of the bacterial consortium in promoting plant development, improving soil nutrient levels, and influencing the rhizospheric microbiota, implying its significance in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04026-2.
Collapse
Affiliation(s)
| | - Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, Assam 788011 India
| | - Sourav Debnath
- Department of Microbiology, Assam University, Silchar, Assam 788011 India
| | - D. K. Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand 249404 India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam 788011 India
| |
Collapse
|
6
|
Xu L, Meng Y, Liu R, Xiao Y, Wang Y, Huang L. Inhibitory effects of Bacillus vallismortis T27 against apple Valsa canker caused by Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105564. [PMID: 37666597 DOI: 10.1016/j.pestbp.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Apple Valsa canker caused by the pathogenic fungus Valsa mali, are one of the most destructive diseases of woody plants worldwide. One rhizosphere microbe strain, designated as T27 and subsequently identified as Bacillus vallismortis based on morphological and phylogenetic analyses, was studied as a potential biocontrol agent. Inoculation assay showed the B. vallismortis T27 suppressed the mycelial growth of V. mali with 81.33% antifungal effect on dual culture plates and caused hyphal deformities, wrinkles. The T27 fermentation broth significantly suppress the fungi's ability to acidify the surrounding environment. The addition of T27 cell-free supernatant (CFS) caused the pH of the fungal culture medium to increase from 3.60 to 5.10. B. vallismortis T27 showed the presence of Surfactin, IturinA and Bacilysin antimicrobial biosynthetic genes by the PCR assay. In addition, the B. vallismortis T27 was able to promote plant growth by producing siderophores and solubilizing phosphorus. The application of 2% fermentation broth of T27 resulted in a significant increase of 55.99% in the height of tomato plants and a 33.03% increase in the fresh weight of tomatoes. Under laboratory and field conditions, the B. vallismortis T27 exhibited strong antifungal activities on detached twigs and intact plants. The treatment of T27 resulted in a 35.9% reduction in lesion area on detached twigs. Furthermore, when applied to intact plants, T27 demonstrated a scar healing rate of 85.7%, surpassing the 77.8% observed in the treatment with tebuconazole. Comparative transcriptome analysis showed down-regulation of the genes associated with the fungal cell wall and cell membrane's synthesis and composition during V. mali treated with the B. vallismortis T27. In addition, gene transcription level analysis under treatment with B. vallismortis T27 revealed a significant increase in the expression levels of genes associated with diterpene biosynthesis, alanine, aspartic acid and glutamate metabolism, and plant hormone signaling in the apple, consistent with qRT-PCR and RNA-seq results. In this study, B. vallismortis T27 isolated from rhizosphere soil and identified as a novel biological control agent against apple Valsa canker. It exhibited effectively control over Valsa canker through multiple mechanisms, including disrupting the fungal cell membrane structure, altering the fungal growth environment, activating the plant MAPK pathway, and inducing upregulation of plant terpene biosynthetic genes. These findings highlight the potential of B. vallismortis T27 as a promising and multifaceted approach for managing apple Valsa canker.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingzhu Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|