1
|
Rizzo C, Caruso G, Maimone G, Patrolecco L, Termine M, Bertolino M, Giannarelli S, Rappazzo AC, Elster J, Lena A, Papale M, Pescatore T, Rauseo J, Soldano R, Spataro F, Aspholm PE, Azzaro M, Lo Giudice A. Microbiome and pollutants in the freshwater sponges Ephydatia muelleri (Lieberkühn, 1856) and Spongilla lacustris (Linnaeus, 1758) from the sub-Arctic Pasvik river (Northern Fennoscandia). ENVIRONMENTAL RESEARCH 2025; 273:121126. [PMID: 39978622 DOI: 10.1016/j.envres.2025.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Despite the ecosystem functions offered by sponges in freshwater habitats, fragmentary studies have targeted their microbiome and the bioaccumulation of legacy and emerging organic micropollutants, making it difficult to test hypotheses about sponge-microbe specificity and response to environmental factors and stressors. The sponge species Ephydatia muelleri and Spongilla lacustris, coexisting in two sites of the Pasvik River (northern Fennoscandia), were analyzed for persistent organic pollutant (POPs) and chemicals of emerging concern (CECs), along with quali-quantitative microbiological features. River water and sediment were similarly treated to establish if the obtained data were site- or sponge-specific. CECs mainly occurred in abiotic matrices, with trimethoprim and ciprofloxacin prevailing in water and sediment, respectively. Only ciprofloxacin and diclofenac were detected in sponges, with higher concentrations generally determined in S. lacustris than E. muelleri. Overall, POP concentrations were in the order polycyclic aromatic hydrocarbons > chlorobenzenes > polychlorobiphenyls > polychloronaphthalenes, with higher values in sponges with respect to abiotic matrices. Generally, POPs occurred at higher concentrations in S. lacustris than E. muelleri. Enzyme activity measurements displayed diverse trends across samples and sites, with E. muelleri displaying higher glycolytic activity than S. lacustris. Prokaryotic abundance in sponges generally exceeded that found in abiotic matrices. Proteobacteria, Planctomycetota, Actinobacteriota, Verrucomicrobiota, and Cyanobacteria predominated in sponge samples, with slight differences between sponge species and sampling sites, whereas Desulfobacterota and Acidobacterota were retrieved mostly in sediment samples. The sponge-associated bacterial communities appeared to be differently affected by pollutant concentration at the site level. Overall, this study highlights the ecological role of freshwater sponges, shedding light on their microbial associations, pollutant bioaccumulation, and potential as bioindicators of aquatic ecosystem health. The findings emphasize the importance of considering both microbial diversity and contaminant accumulation for a holistic understanding of the roles played by freshwater sponges in human-impacted environments.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy; Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Marco Termine
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Marco Bertolino
- Department of the Earth, Environment and Life Science (DiSTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Stefania Giannarelli
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; Cà Foscari University of Venice, Dorsoduro 3246, 30123, Venezia, Italy
| | - Josef Elster
- Institute of Botany, Czech Academy of Science, Třeboň, Czech Republic; Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alessio Lena
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Rosamaria Soldano
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Paul Eric Aspholm
- Norwegian Institute of Bioeconomy Research (NIBIO) Svanhovd 23, 9925, Norway
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Mas Martinez I, Pushkareva E, Keilholz LA, Linne von Berg KH, Karsten U, Kammann S, Becker B. Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms 2024; 12:2606. [PMID: 39770808 PMCID: PMC11676250 DOI: 10.3390/microorganisms12122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m). Metagenomic analyses were used to provide insights into the community composition, revealing that temperature, pH, and nutrient availability significantly shaped the community. In contrast, altitude did not directly influence the microbial composition significantly. Eukaryotic communities were dominated by Chloroplastida and fungi, while Proteobacteria and Actinobacteria prevailed among prokaryotes. Cyanobacteria, particularly orders such as Pseudoanabaenales, Pleurocapsales, and Nostocales, emerged as the most abundant photoautotrophic organisms. Our findings highlight the impact of environmental gradients on microbial diversity and the functional dynamics of biocrusts, emphasizing their critical role in Arctic tundra ecosystems. Arctic biocrusts are intricate micro-ecosystems, whose structure is strongly shaped by local physicochemical parameters, likely affecting essential ecological functions.
Collapse
Affiliation(s)
- Isabel Mas Martinez
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ekaterina Pushkareva
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Leonie Agnes Keilholz
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Karl-Heinz Linne von Berg
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ulf Karsten
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Sandra Kammann
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Burkhard Becker
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| |
Collapse
|
3
|
Pushkareva E, Hejduková E, Elster J, Becker B. Microbial response to seasonal variation in arctic biocrusts with a focus on fungi and cyanobacteria. ENVIRONMENTAL RESEARCH 2024; 263:120110. [PMID: 39374753 DOI: 10.1016/j.envres.2024.120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Biocrusts are crucial components of Arctic ecosystems, playing significant roles in carbon and nitrogen cycling, especially in regions where plant growth is limited. However, the microbial communities within Arctic biocrusts and their strategies for surviving the harsh conditions remain poorly understood. In this study, the microbial profiles of Arctic biocrusts across different seasons (summer, autumn, and winter) were investigated in order to elucidate their survival strategies in extreme conditions. Metagenomic and metatranscriptomic analyses revealed significant differences in microbial community composition among the sites located in different elevations. The bacterial communities were dominated by Actinobacteria and Proteobacteria, while the fungal communities were mainly represented by Ascomycota and Basidiomycota, with lichenized and saprotrophic traits prevailing. Cyanobacteria were primarily composed of heterocystous cyanobacteria. Furthermore, the study identified molecular mechanisms underlying cold adaptation, including the expression of heat shock proteins and cold-inducible RNA helicases in cyanobacteria and fungi. Overall, the microbial communities appear to be permanently well adapted to the extreme environment.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Zulpicher Str. 47B, 50674 Cologne, Germany.
| | - Eva Hejduková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic; Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982 Třeboň, Czech Republic
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982 Třeboň, Czech Republic; Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005 České Budějovice, Czech Republic
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Zulpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
4
|
Jung P, Brand R, Briegel-Williams L, Werner L, Jost E, Lentendu G, Singer D, Athavale R, Nürnberg DJ, Alfaro FD, Büdel B, Lakatos M. The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert. ENVIRONMENTAL MICROBIOME 2024; 19:59. [PMID: 39123247 PMCID: PMC11311966 DOI: 10.1186/s40793-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany.
| | - Rebekah Brand
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Laura Briegel-Williams
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Lina Werner
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Emily Jost
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, Université de Neuchâtel, Neuchâtel, Switzerland
| | - David Singer
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Rujuta Athavale
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Burkhard Büdel
- Biology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
5
|
Mugnai G, Pinchuk I, Borruso L, Tiziani R, Sannino C, Canini F, Turchetti B, Mimmo T, Zucconi L, Buzzini P. The hidden network of biocrust successional stages in the High Arctic: Revealing abiotic and biotic factors shaping microbial and metazoan communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171786. [PMID: 38508248 DOI: 10.1016/j.scitotenv.2024.171786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy.
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Raphael Tiziani
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| |
Collapse
|
6
|
Pushkareva E, Elster J, Kudoh S, Imura S, Becker B. Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front Microbiol 2024; 14:1323148. [PMID: 38249463 PMCID: PMC10797080 DOI: 10.3389/fmicb.2023.1323148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czechia
- Centre for Polar Ecology, University of South Bohemia, České Budějovice, Czechia
| | - Sakae Kudoh
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Satoshi Imura
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Becker B, Pushkareva E. Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding. Genes (Basel) 2023; 14:genes14040812. [PMID: 37107570 PMCID: PMC10138292 DOI: 10.3390/genes14040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The diversity of soil bacteria was analyzed via metabarcoding and metagenomic approaches using DNA samples isolated from the biocrusts of 12 different Arctic and Antarctic sites. For the metabarcoding approach, the V3-4 region of the 16S rRNA was targeted. Our results showed that nearly all operational taxonomic units (OTUs = taxa) found in metabarcoding analyses were recovered in metagenomic analyses. In contrast, metagenomics identified a large number of additional OTUs absent in metabarcoding analyses. In addition, we found huge differences in the abundance of OTUs between the two methods. The reasons for these differences seem to be (1) the higher sequencing depth in metagenomics studies, which allows the detection of low-abundance community members in metagenomics, and (2) bias of primer pairs used to amplify the targeted sequence in metabarcoding, which can change the community composition dramatically even at the lower taxonomic levels. We strongly recommend using only metagenomic approaches when establishing the taxonomic profiles of whole biological communities.
Collapse
|