1
|
Suarez-Fernandez M, Ferreira JJ, Campa A. Impact of Farming System on Soil Microbial Communities Associated with Common Bean in a Region of Northern Spain. PLANTS (BASEL, SWITZERLAND) 2025; 14:1359. [PMID: 40364387 PMCID: PMC12073228 DOI: 10.3390/plants14091359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Agricultural soil microbiomes play a crucial role in the modification and maintenance of soil properties such as soil fertility, nutrient availability, and organic matter decomposition. This study assessed the influence of organic and conventional farming practices on soil microbiomes associated with common bean (Phaseolus vulgaris L.) at the field scale in Northern Spain. Metabarcoding techniques were used to compare both microbial communities. Alpha and beta diversity analyses revealed that organic soils supported richer fungal communities with a higher species evenness, whereas conventional soils were abundant in prokaryotes. Taxonomic assignment of the observed Operational Taxonomic Units (OTUs) identified a total of 1141 prokaryotic and 622 fungal taxa. Among these, 200 prokaryotic and 113 fungal OTUs showed significant differences in response to different farming practices. This classification allowed the establishment of a core microbial community associated with the common bean crop, comprising 594 prokaryotic OTUs classified into 11 phyla, and 256 fungal OTUs classified into 11 phyla. Functional analyses indicated that organic farming promoted a broader range of prokaryotic functions related to nitrogen metabolism, stronger positive interactions between fungi and bacteria, a higher abundance of beneficial microorganisms, such as biocontrol fungi and mycorrhizae, and greater overall microbial stability. In contrast, conventional soil showed a higher prevalence of potentially phytopathogenic fungi and more complex, competitive microbial interactions. These results highlight the effect of the farming system on the diversity and microbial composition of the soils associated with bean crops in Northern Spain. While further research in different climatic regions and crop systems is essential, these findings underscore the potential of organic farming to improve soil diversity and enhance microbial network interactions.
Collapse
Affiliation(s)
| | | | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300 Villaviciosa, Spain; (M.S.-F.); (J.J.F.)
| |
Collapse
|
2
|
Zhao Q, Zhou W, Lv W, Yuan Q, Zhang Y, Yang H, Huang W, Lv W. Long-term rice-eel co-culture system effectively alleviated the accumulation of antibiotic resistance genes in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125099. [PMID: 40121985 DOI: 10.1016/j.jenvman.2025.125099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Alleviating the accumulation of antibiotic resistance genes (ARGs) in farmlands is crucial for restricting the transfer of ARGs to crops and controlling the soil-borne microbiological health risk. Rice and eel co-culture (REC) systems have recently been used as an emerging integrated farming model that can stabilize grain yields and improve fertilizer availability. However, the influence of long-term REC system concerning the aggregation and health risk of ARGs in rice fields is still unclear. Here, we deciphered firstly the profile, potential of pathogenicity and mobility, and bacterial hosts for soil ARGs in the long-term REC system compared to the mono-rice (MR) culture system by collecting soil samples from 12 rice fields in Shanghai. The long-term REC system alleviated the accumulation of ARGs in soil, which is manifested in the abundance decrease of total ARGs and 11 ARG types (e.g., multidrug and aminoglycoside). The frequency of ARGs co-occurring with VFGs and MGEs was lower in the long-term REC system than in the MR system, indicating the lower pathogenicity and mobility potential for ARGs. The soil microbial community was identified to primarily drive the ARG discrepancy between the long-term REC and MR systems. In comparison with the MR system, long-term REC weakened the competitive advantage of ARG bacterial hosts, which might contribute to the decreased prevalence of antibiotic resistance. Overall, these findings uncovered the important role of long-term REC system in alleviating the accumulation of soil ARGs, providing theoretical support for antibiotic resistance risk control and sustainable agricultural strategic management.
Collapse
Affiliation(s)
- Qingqing Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wenzong Zhou
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weiwei Lv
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Quan Yuan
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yuning Zhang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hang Yang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weiwei Huang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Weiguang Lv
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
3
|
Chen B, Liu M, Zhang Z, Lv B, Yu Y, Zhang Q, Xu N, Yang Z, Lu T, Xia S, Chen J, Qian H. Data-Driven Approach for Designing Eco-Friendly Heterocyclic Compounds for the Soil Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1530-1541. [PMID: 39797823 DOI: 10.1021/acs.est.4c09664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures. This study developed a machine-learning approach that integrates the properties of chemical structures with the diversity of soil bacteria and functions to predict the impact of heterocyclic compounds on the microbial community and improve the design of eco-friendly heterocyclic compounds. We screened the key chemical structures of heterocyclic compounds─particularly those with topological polar surface areas (<74.2 Å2 or 111.3-154.1 Å2), carboxyl groups, and dissociation constant, which maintained high soil bacterial diversity and functions, revealing threshold effects where specific structural parameters dictated microbial responses. These eco-friendly compounds stabilize communities and increase beneficial carbon and nitrogen cycle functions. By applying these design parameters, we quantitatively assessed the eco-friendliness scores of 811 heterocyclic compounds, providing a robust foundation for guiding future applications. Our study disentangles the critical chemical structure-related properties that influence the soil microbial community and establishes a computational framework for designing eco-friendly compounds with ecological benefits from an ecological perspective.
Collapse
Affiliation(s)
- Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Meng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Zhenyan Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, P. R. of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. of China
| | - Binghai Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Qi Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, P. R. of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. of China
| | - Nuohan Xu
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, P. R. of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. of China
| | - Zhihan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, P. R. of China
| |
Collapse
|
4
|
El-Wahed SIMA, Ibrahim HAM. Molluscicidal assessment of certain toxicants: Impact on biochemical alterations and electrophoretic protein patterns in Massylaea vermiculata (O. F. Müller, 1774) snails. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104619. [PMID: 39710125 DOI: 10.1016/j.etap.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Massylaea vermiculata snails are a significant gastropod pest in Egypt, threatening agriculture. Due to increasing concerns about conventional pesticides, it is imperative to find effective alternatives that are less harmful. We assessed the molluscicidal activity of abamectin, methoxyfenozide, and spinosad using the leaf-dipping method in vitro and the effect of LC50 of these compounds on biochemical aspects and protein electrophoresis. Results showed that these compounds exhibited molluscicidal activity, with LC50 values of 0.21, 0.63, and 0.65 mg/l for abamectin, methoxyfenozide and spinosad, respectively. Biochemical assays on treated snails showed increased aspartate and alanine aminotransferase and alkaline phosphatase activities and reduced total protein compared to controls. For the most effective compound (abamectin), these values were 195.36, 105.82, 276.76, and 2.49, compared to control values of 88.00, 47.67, 124.67, and 5.52, after 10 days post-treatment. Protein electrophoresis revealed variations in protein bands. Thus, these compounds can be effective within integrated control programs.
Collapse
Affiliation(s)
- Sahar I M Abd El-Wahed
- Department of Harmful Animals, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12619, Egypt
| | - Hesham A M Ibrahim
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
5
|
Wang Y, Zheng C, Qiu M, Zhang L, Fang H, Yu Y. Tebuconazole promotes spread of a multidrug-resistant plasmid into soil bacteria to form new resistant bacterial strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172444. [PMID: 38615769 DOI: 10.1016/j.scitotenv.2024.172444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The development of antibiotic resistance threatens human and environmental health. Non-antibiotic stressors, including fungicides, may contribute to the spread of antibiotic resistance genes (ARGs). We determined the promoting effects of tebuconazole on ARG dissemination using a donor, Escherichia coli MG1655, containing a multidrug-resistant fluorescent plasmid (RP4) and a recipient (E. coli HB101). The donor was then incorporated into the soil to test whether tebuconazole could accelerate the spread of RP4 into indigenous bacteria. Tebuconazole promoted the transfer of the RP4 plasmid from the donor into the recipient via overproduction of reactive oxygen species (ROS), enhancement of cell membrane permeability and regulation of related genes. The dissemination of the RP4 plasmid from the donor to soil bacteria was significantly enhanced by tebuconazole. RP4 plasmid could be propagated into more genera of bacteria in tebuconazole-contaminated soil as the exposure time increased. These findings demonstrate that the fungicide tebuconazole promotes the spread of the RP4 plasmid into indigenous soil bacteria, revealing the potential risk of tebuconazole residues enhancing the dissemination of ARGs in soil environments.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Danilova N, Galieva G, Kuryntseva P, Selivanovskaya S, Galitskaya P. Influence of the Antibiotic Oxytetracycline on the Morphometric Characteristics and Endophytic Bacterial Community of Lettuce ( Lactuca sativa L.). Microorganisms 2023; 11:2828. [PMID: 38137972 PMCID: PMC10746115 DOI: 10.3390/microorganisms11122828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotics enter the soil with compost prepared from livestock manures and other sources. There is concern that they may influence plant growth and cause antibiotic resistance in soil and plant endospheric microbiomes. In the present work, lettuce plants were cultivated in soil and hydroponics spiked with oxytetracycline (0, 15, and 300 mg × kg-1 and 0, 15, and 50 mg × L-1, respectively) during a 28-day greenhouse experiment. It was revealed that the antibiotic reduced the chlorophyll content, the biomass, and the length of the roots and stems by 1.4-4.7, 1.8-39, 2.5-3.2, and 1.8-6.3 times in soil and in hydroponics. The copy numbers of the tet(A) and tet(X) genes were revealed to be 4.51 × 103-1.58 × 105 and 8.36 × 106-1.07 × 108 copies × g-1, respectively, suggesting the potential migration of these genes from soil/hydroponics to plant roots and leaves. According to a non-metric multidimensional scaling (NMDS) analysis of the 16S rRNA amplicon sequencing data, endospheric bacterial communities were similar in leaves and roots independent of the growing substrate and antibiotic concentration. While soil bacterial communities were unaffected by the presence of antibiotics, hydroponic communities exhibited dependency, likely attributable to the absence of the mitigating effect of soil particle absorption.
Collapse
Affiliation(s)
| | | | | | | | - Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan 420008, Russia; (N.D.); (G.G.); (P.K.); (S.S.)
| |
Collapse
|
7
|
Wu X, Ma Y, Li X, He N, Zhang T, Liu F, Feng H, Dong J. Molecular mechanism of kidney damage caused by abamectin in carp: Oxidative stress, inflammation, mitochondrial damage, and apoptosis. Toxicology 2023; 494:153599. [PMID: 37499778 DOI: 10.1016/j.tox.2023.153599] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Indiscriminate use of pesticides not only leads to environmental pollution problems, but also causes poisoning of non-target organisms. Abamectin (ABM), a widely used insecticide worldwide, is of wide concern due to its persistence in the environment and its high toxicity to fish. The kidney, as a key organ for detoxification, is more susceptible to the effects of ABM. Unfortunately, few studies investigated the mechanisms behind this connection. In this study, carp was used as an indicator organism for toxicological studies to investigate renal damage caused by ABM residues in carp. In this work, carp were exposed to ABM (0, 3.005, and 12.02 μg/L) for 4 d and the nephrotoxicity was assessed. Histopathological findings revealed that ABM exposure induced kidney damage in carp, as well as an increase Creatinine and BUN levels. Meanwhile, ABM as a reactive oxygen species (ROS) stimulator, boosted ROS bursts and lowered antioxidant enzyme activity while activating the body's antioxidant system, the Nrf2-Keap1 signaling pathway. The accumulation of ROS can also lead to the imbalance of the body's oxidation system, leading to oxidative stress. At the same time, NF-κB signaling pathway associated with inflammation was activated, which regulated expression levels of inflammatory cytokines (TNF-α, IL-6, IL-1β, and iNOS increased, while IL-10 and TGF-β1 decreased). In addition, ABM exposure caused structural damage to kidney mitochondria of carp, resulting in decreased mitochondrial membrane potential and ATP production capacity, and mediated apoptosis through endogenous pathways Bax/Bcl-2/Caspase-9/Caspase-3. In conclusion, ABM caused kidney damage in carp by inducing oxidative stress, inflammation, and apoptosis through mitochondrial pathway. These findings will be useful for future research into molecular mechanisms of ABM-induced nephrotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
8
|
Qiu J, Chen Y, Feng Y, Li X, Xu J, Jiang J. Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3137. [PMID: 36833828 PMCID: PMC9958589 DOI: 10.3390/ijerph20043137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The constant application of manure-based fertilizers in vegetable farms leads to antibiotic residue accumulation in soils, which has become a major stressor affecting agroecosystem stability. The present study investigated the adaptation profiles of rhizosphere microbial communities in different vegetable farms to multiple residual antibiotics. Multiple antibiotics, including trimethoprim, sulfonamides, quinolones, tetracyclines, macrolides, lincomycins, and chloramphenicols, were detected in the vegetable farms; the dominant antibiotic (trimethoprim) had a maximum concentration of 36.7 ng/g. Quinolones and tetracyclines were the most prevalent antibiotics in the vegetable farms. The five most abundant phyla in soil samples were Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi and Firmicutes, while the five most abundant phyla in root samples were Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Myxococcota. Macrolides were significantly correlated with microbial community composition changes in soil samples, while sulfonamides were significantly correlated with microbial community composition changes in root samples. Soil properties (total carbon and nitrogen contents and pH) influenced the shifts in microbial communities in rhizosphere soils and roots. This study provides evidence that low residual antibiotic levels in vegetable farms can shift microbial community structures, potentially affecting agroecosystem stability. However, the degree to which the shift occurs could be regulated by environmental factors, such as soil nutrient conditions.
Collapse
Affiliation(s)
- Jincai Qiu
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362000, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiaofeng Li
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jinghua Xu
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jinping Jiang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|