1
|
Fu W, Xu M, Yang F, Li X. Comparative Transcriptome Analysis Reveals Key Genes Related to Erythritol Production in Yarrowia lipolytica and the Optimization of Culture Conditions. Int J Mol Sci 2025; 26:4180. [PMID: 40362417 PMCID: PMC12071344 DOI: 10.3390/ijms26094180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Erythritol has been widely used in the food industry, which predominantly synthesizes it via microbial fermentation, in which Yarrowia lipolytica serves as the preferred candidate chassis strain. However, the wild-type strain of Y. lipolytica exhibits several limitations, including suboptimal industrial performance and elevated levels of by-products, which pose significant challenges in biomanufacturing processes. It is significant to understand the synthesis mechanism of erythritol for improving the capacity of erythritol production by Y. lipolytica. In this study, a mutant exhibiting high erythritol production and stable genetic performance was obtained via a combination of UV and atmospheric and room-temperature plasma mutagenesis. Some key genes related to erythritol production were identified through comparative transcriptome analysis of the mutant strain, revealing significant changes in their expression levels. Individual overexpression of the genes encoding ribose-5-phosphate isomerase, glucose-6-phosphate-1-epimerase, adenylate kinase, and alcohol dehydrogenase in Y. lipolytica Po1g enhanced erythritol production, demonstrating the critical role of each gene in erythritol production. This finding elucidates the molecular mechanism underlying the improved erythritol yield in the mutant strain. The Y. lipolytica mutant C1 produced 194.47 g/L erythritol in a 10 L fermenter with a productivity of 1.68 g/L/h during batch fermentation, surpassing the wild-type strain and reducing the cultivation time by 21 h. It is significant to understand the mechanism of erythritol synthesis for improving erythritol production and its application in industrial-scale production.
Collapse
Affiliation(s)
| | | | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.F.)
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.F.)
| |
Collapse
|
2
|
Xu S, Li Q, Li Y, Zhang Y, Li Q, Ji L, Cheng H. Synergistic effect of transporter and pathway engineering on the key performance indicators of erythritol synthesis by the yeast Yarrowia lipolytica. Appl Environ Microbiol 2025; 91:e0006125. [PMID: 40135906 PMCID: PMC12016529 DOI: 10.1128/aem.00061-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Erythritol, a food additive, is produced on an industrial scale using the yeast Yarrowia lipolytica. Nevertheless, the key performance indicators (KPIs) have been found to be unsatisfactory, resulting in elevated erythritol production cost. This study demonstrated that the KPIs (titer, productivity, and yield) of erythritol can be improved by the synergistic application of transporter and pathway engineering strategies in the producing strain. The engineered Y. lipolytica strain Ylxs48 exhibits a glucose consumption rate of 310 g/L of glucose within 46 h during batch culture in 3, 100, and 200 L bioreactors as compared to above 72 h for the parental strain Ylxs01. The erythritol yield achieved ranges from 0.69 to 0.74 g/g depending on the culture conditions as compared to 0.55-0.57 g/g for the parental strain Ylxs01. The productivity surpasses 4.60 g/(L·h), representing a 1.91-fold improvement over the parental strain Ylxs01 in 3, 100, or 200 L bioreactors. Under fed-batch conditions in a 200 L bioreactor, an erythritol titer of 355.81 g/L was achieved, marking the highest titer ever reported. This increased erythritol titer enabled crystallization at 4°C directly from the clear supernatant, eliminating the requirement for evaporation or concentration steps. A comprehensive techno-economic analysis of the entire process conclusively demonstrated that implementing the industrial process based on the engineered strain Ylxs48 led to a significant 23% reduction in production cost. This approach holds the potential to substantially reduce erythritol costs and provides novel insights for engineering other industrial strains. IMPORTANCE The expansion of the erythritol market attracted excessive capital injection, resulting in overcapacity, operational difficulties, and even bankruptcy of erythritol manufacturers. Technology upgrades in the industry are imminent. However, the production technology of existing enterprises is seriously homogenized, and there is a lack of competitive core-producing strains. In this study, the industrial erythritol-producing strain Y. lipolytica CGMCC7326 was genetically modified by integrating substrate transport and pathway modification, which improved the conversion of glucose and significantly improved KPIs, thereby reducing the erythritol production cost.
Collapse
Affiliation(s)
- Shuo Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Elazzazy AM, Baeshen MN, Alasmi KM, Alqurashi SI, Desouky SE, Khattab SMR. Where Biology Meets Engineering: Scaling Up Microbial Nutraceuticals to Bridge Nutrition, Therapeutics, and Global Impact. Microorganisms 2025; 13:566. [PMID: 40142459 PMCID: PMC11945976 DOI: 10.3390/microorganisms13030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The global nutraceutical industry is experiencing a paradigm shift, driven by an increasing demand for functional foods and dietary supplements that address malnutrition and chronic diseases such as obesity, diabetes, cardiovascular conditions, and cancer. Traditional plant- and animal-derived nutraceuticals face limitations in scalability, cost, and environmental impact, paving the way for microbial biotechnology as a sustainable alternative. Microbial cells act as bio-factories, converting nutrients like glucose and amino acids into valuable nutraceutical products such as polyunsaturated fatty acids (PUFAs), peptides, and other bioactive compounds. By harnessing their natural metabolic capabilities, microorganisms efficiently synthesize these bioactive compounds, making microbial production a sustainable and effective approach for nutraceutical development. This review explores the transformative role of microbial platforms in the production of nutraceuticals, emphasizing advanced fermentation techniques, synthetic biology, and metabolic engineering. It addresses the challenges of optimizing microbial strains, ensuring product quality, and scaling production while navigating regulatory frameworks. Furthermore, the review highlights cutting-edge technologies such as CRISPR/Cas9 for genome editing, adaptive evolution for strain enhancement, and bioreactor innovations to enhance yield and efficiency. With a focus on sustainability and precision, microbial production is positioned as a game-changer in the nutraceutical industry, offering eco-friendly and scalable solutions to meet global health needs. The integration of omics technologies and the exploration of novel microbial sources hold the potential to revolutionize this field, aligning with the growing consumer demand for innovative and functional bioactive products.
Collapse
Affiliation(s)
- Ahmed M. Elazzazy
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Mohammed N. Baeshen
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Khalid M. Alasmi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Shatha I. Alqurashi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Said E. Desouky
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sadat M. R. Khattab
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
4
|
Wang H, Hou J, Wang D, Shi H, Gong L, Lv X, Liu J. Effect of low frequency alternating magnetic field for erythritol production in Yarrowia lipolytica. Arch Microbiol 2024; 206:392. [PMID: 39230673 DOI: 10.1007/s00203-024-04115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.
Collapse
Affiliation(s)
- Hong Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiayang Hou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Dongxu Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Hu Shi
- Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Luqian Gong
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xuemeng Lv
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jinlong Liu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
5
|
Li L, Zhang Q, Shi R, Yao M, Tian K, Lu F, Qin HM. Multidimensional combinatorial screening for high-level production of erythritol in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 406:131035. [PMID: 38925409 DOI: 10.1016/j.biortech.2024.131035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Yarrowia lipolytica was successfully engineered to synthesize erythritol from crude glycerol, a cheap by-product of biodiesel production, but the yield remained low. Here, a biosensor-guided adaptive evolution screening platform was constructed to obtain mutant strains which could efficiently utilize crude glycerol to produce erythritol. Erythrose reductase D46A (M1) was identified as a key mutant through whole-genome sequencing of the strain G12, which exhibited higher catalytic activity (1.6-fold of the wild-type). M1 was further modified to obtain a combinatorial mutant with 4.1-fold enhancement of catalytic activity. Finally, the metabolic network was reconfigured to redirect carbon fluxes toward erythritol synthesis. The erythritol titer of the engineered strain G31 reached 220.5 g/L with a productivity of 1.8 g/L/h in a 5-L bioreactor. The study provides valuable guidance for biosensor-based ultra-high-throughput screening strategies in Y. lipolytica, as well as presenting a new paradigm for the sustainable valorization of crude glycerol.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Qianqian Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Ruirui Shi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Kangming Tian
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
6
|
Li M, Ni Z, Li Z, Yin Y, Liu J, Wu D, Sun Z, Wang L. Research progress on biosynthesis of erythritol and multi-dimensional optimization of production strategies. World J Microbiol Biotechnol 2024; 40:240. [PMID: 38867081 DOI: 10.1007/s11274-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Erythritol, as a new type of natural sweetener, has been widely used in food, medical, cosmetics, pharmaceutical and other fields due to its unique physical and chemical properties and physiological functions. In recent years, with the continuous development of strategies such as synthetic biology, metabolic engineering, omics-based systems biology and high-throughput screening technology, people's understanding of the erythritol biosynthesis pathway has gradually deepened, and microbial cell factories with independent modification capabilities have been successfully constructed. In this review, the cheap feedstocks for erythritol synthesis are introduced in detail, the environmental factors affecting the synthesis of erythritol and its regulatory mechanism are described, and the tools and strategies of metabolic engineering involved in erythritol synthesis are summarized. In addition, the study of erythritol derivatives is helpful in expanding its application field. Finally, the challenges that hinder the effective production of erythritol are discussed, which lay a foundation for the green, efficient and sustainable production of erythritol in the future and breaking through the bottleneck of production.
Collapse
Affiliation(s)
- Meng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Zifu Ni
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhongzeng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Yin
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianguang Liu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang, 453001, China
| | - Zhongke Sun
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Le Wang
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Wang H, Li H, Lee CK, Mat Nanyan NS, Tay GS. A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation. Int J Biol Macromol 2024; 261:129536. [PMID: 38278390 DOI: 10.1016/j.ijbiomac.2024.129536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
With the rapid development of biodiesel, biodiesel-derived glycerol has become a promising renewable bioresource. The key to utilizing this bioresource lies in the value-added conversion of crude glycerol. While purifying crude glycerol into a pure form allows for diverse applications, the intricate nature of this process renders it costly and environmentally stressful. Consequently, technology facilitating the direct utilization of unpurified crude glycerol holds significant importance. It has been reported that crude glycerol can be bio-transformed or chemically converted into high-value polymers. These technologies provide cost-effective alternatives for polymer production while contributing to a more sustainable biodiesel industry. This review article describes the global production and quality characteristics of biodiesel-derived glycerol and investigates the influencing factors and treatment of the composition of crude glycerol including water, methanol, soap, matter organic non-glycerol, and ash. Additionally, this review also focused on the advantages and challenges of various technologies for converting crude glycerol into polymers, considering factors such as the compatibility of crude glycerol and the control of unfavorable factors. Lastly, the application prospect and value of crude glycerol conversion were discussed from the aspects of economy and environmental protection. The development of new technologies for the increased use of crude glycerol as a renewable feedstock for polymer production will be facilitated by the findings of this review, while promoting mass market applications.
Collapse
Affiliation(s)
- Hong Wang
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Hongpeng Li
- Tangshan Jinlihai Biodiesel Co. Ltd., 063000 Tangshan, China
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Noreen Suliani Mat Nanyan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia.
| |
Collapse
|
8
|
Li J, Li H, Liu H, Luo Y. Recent Advances in the Biosynthesis of Natural Sugar Substitutes in Yeast. J Fungi (Basel) 2023; 9:907. [PMID: 37755015 PMCID: PMC10533046 DOI: 10.3390/jof9090907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Natural sugar substitutes are safe, stable, and nearly calorie-free. Thus, they are gradually replacing the traditional high-calorie and artificial sweeteners in the food industry. Currently, the majority of natural sugar substitutes are extracted from plants, which often requires high levels of energy and causes environmental pollution. Recently, biosynthesis via engineered microbial cell factories has emerged as a green alternative for producing natural sugar substitutes. In this review, recent advances in the biosynthesis of natural sugar substitutes in yeasts are summarized. The metabolic engineering approaches reported for the biosynthesis of oligosaccharides, sugar alcohols, glycosides, and rare monosaccharides in various yeast strains are described. Meanwhile, some unresolved challenges in the bioproduction of natural sugar substitutes in yeast are discussed to offer guidance for future engineering.
Collapse
Affiliation(s)
- Jian Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
| | - Honghao Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
| | - Huayi Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| |
Collapse
|
9
|
Huang LG, Xiao BW, Wang WJ, Nian L, Wang HY, Yang WL, Zhou JP, Zhang B, Liu ZQ, Zheng YG. Multiplex modification of Yarrowia lipolytica for enhanced erythritol biosynthesis from glycerol through modularized metabolic engineering. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02906-0. [PMID: 37468580 DOI: 10.1007/s00449-023-02906-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Erythritol is a novelty 4-carbon sugar polyol and has great potential to be used as the precursor of some platform chemicals. The increasing cost of glucose poses researchers shifting insights to the cheaper biodiesel raw materials. Herein, we engineered a non-degradation, non-byproducts Yarrowia lipolytica for the erythritol production with high-titer from glycerol. Initially, the degradation and competition modules were blocked by URA3 counter-selection marker. Subsequently, a shortened biosynthetic pathway was explored to elevate its synthetic flux by multi-modules combination expression of functional genes. Furthermore, a screened glycerol transporter ScFPS1 was integrated into ERY6 genome to promote the glycerol uptake. The constructed strain ERY8 produced 176.66 g/L erythritol in the 5-L bioreactor with a yield and productivity of 0.631 g/g and 1.23 g/L/h, respectively, which achieved the highest fermentation production efficiency till date. This study proposed a novel multi-modules combination strategy for effectively engineering Y. lipolytica to produce erythritol using glycerol.
Collapse
Affiliation(s)
- Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo-Wen Xiao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wen-Jia Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lu Nian
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., Ltd, Kaihua, 324302, People's Republic of China
| | - Wu-Long Yang
- Zhejiang Huakang Pharmaceutical Co., Ltd, Kaihua, 324302, People's Republic of China
| | - Jun-Ping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
10
|
Jiao X, Bian Q, Feng T, Lyu X, Yu H, Ye L. Efficient Secretory Production of δ-Tocotrienol by Combining Pathway Modularization and Transportation Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37262183 DOI: 10.1021/acs.jafc.3c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The vitamin E component δ-tocotrienol has shown impressive activities in radioprotection, neuroprotection, and cholesterol reduction. Its production is limited by the low content in plants and difficulty in separation from other tocotrienols. Fermentative production using a microbial cell factory that exclusively produces and secretes δ-tocotrienol is a promising alternative approach. Assembly of the δ-tocotrienol synthetic pathway in Saccharomyces cerevisiae followed by comprehensive pathway engineering led to the production of 73.45 mg/L δ-tocotrienol. Subsequent addition of 2-hydroxypropyl-β-cyclodextrin (CD) and overexpression of the transcription factor PDR1 significantly elevated δ-tocotrienol titer to 241.7 mg/L (63.65 mg/g dry cell weight) in shake flasks, with 30.4% secreted. By properly adding CD and the in situ extractant olive oil, 181.12 mg/L of δ-tocotrienol was collected as an extracellular product, accounting for 85.6% of the total δ-tocotrienol production. This process provides not only a promising δ-tocotrienol cell factory but also insights into yeast engineering toward secretory production of other terpenoids.
Collapse
Affiliation(s)
- Xue Jiao
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qi Bian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Taotao Feng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
11
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|