1
|
Li SH, Tao Y, Yang ZC, Fu HZ, Lin HY, Peng XX, Li H. Valine potentiates cefoperazone-sulbactam to kill methicillin-resistant Staphylococcus aureus. mSystems 2025; 10:e0124424. [PMID: 39692510 PMCID: PMC11748551 DOI: 10.1128/msystems.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 12/19/2024] Open
Abstract
Metabolic state-reprogramming approach was extended from Gram-negative bacteria to Gram-positive bacterium methicillin-resistant Staphylococcus aureus (MRSA) for identifying desired reprogramming metabolites to synergize existing antibiotic killing to MRSA. Metabolomics comparison between MRSA and methicillin-sensitive Staphylococcus aureus showed a depressed metabolic state in MRSA. Valine was identified as the most depressed metabolite/biomarker, and valine, leucine and isoleucine biosynthesis as the most enriched metabolic pathway. Thus, valine was used as a reprogramming metabolite to potentiate existing antibiotic killing to MRSA. Among the tested antibiotics, valine synergized cefoperazone-sulbactam (SCF) to produce the greatest killing effect. The combined effect of SCF and valine was demonstrated in clinical MRSA isolates and in mouse systemic and thigh infection models. Underlying mechanisms were attributed to valine-induced the activation of the pyruvate cycle/the TCA cycle and fatty acid biosynthesis. The activated pyruvate cycle/the TCA cycle elevated proton motive force by NADH and the activated fatty acid biosynthesis promoted membrane permeability by lauric acid. Both together increased cefoperazone uptake, which outpaces efflux action and thereby intracellular drug is elevated to effectively kill MRSA. These results provide the combination of valine and SCF to produce a new drug candidate effective against MRSA. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is possibly the most infamous example of antibiotic resistance and new antibiotics are urgently needed to control it. The present study used metabolic state-reprogramming approach to identify an ideal biomarker as an antibiotic adjuvant for reversing the metabolic state of MRSA. The most repressed valine was identified as the adjuvant. Exogenous valine most effectively potentiated cefoperazone-sulbactam (SCF) to kill MRSA in vitro and in vivo. Viability of 18 clinical MRSA isolates was reduced by the top 276.64-fold in the presence of valine and SCF. In mouse models, lower bacterial load in liver, spleen, kidney, thigh, and higher survival were determined in the SCF + valine than valine or SCF alone. Valine promoted MRSA to increase SCF uptake that overcomes the efflux and enzymatic hydrolysis. It also extended the PAE of SCF. These occur because valine activates the pyruvate cycle to elevate proton motive force by NADH and increases membrane permeability by lauric acid. Therefore, the combination of valine and SCF is a new drug candidate effective against MRSA.
Collapse
Affiliation(s)
- Shao-hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yuan Tao
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhi-cheng Yang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Huan-zhe Fu
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui-yin Lin
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Zhang Z, Pan Z, Fan L, Su Y, Fei J. Comparative Metabolomics Reveals Changes in the Metabolic Pathways of Ampicillin- and Gentamicin-Resistant Staphylococcus aureus. J Proteome Res 2024; 23:4480-4494. [PMID: 39294851 DOI: 10.1021/acs.jproteome.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Antibiotic resistance is a major global challenge requiring new treatments and a better understanding of the bacterial resistance mechanisms. In this study, we compared ampicillin-resistant (R-AMP) and gentamicin-resistant (R-GEN) Staphylococcus aureus strains with a sensitive strain (ATCC6538) using metabolomics. We identified 109 metabolites; 28 or 31 metabolites in R-AMP or R-GEN differed from those in ATCC6538. Moreover, R-AMP and R-GEN were enriched in five and four pathways, respectively. R-AMP showed significantly up-regulated amino acid metabolism and down-regulated energy metabolism, whereas R-GEN exhibited an overall decrease in metabolism, including carbohydrate, energy, and amino acid metabolism. Furthermore, the activities of the metabolism-related enzymes pyruvate dehydrogenase and TCA cycle dehydrogenases were inhibited in antibiotic-resistant bacteria. Significant decreases in NADH and ATP levels were also observed. In addition, the arginine biosynthesis pathway, which is related to nitric oxide (NO) production, was enriched in both antibiotic-resistant strains. Enhanced NO synthase activity in S. aureus promoted NO production, which further reduced reactive oxygen species, mediating the development of bacterial resistance to ampicillin and gentamicin. This study reveals that bacterial resistance affects metabolic profile, and changes in energy metabolism and arginine biosynthesis are important factors leading to drug resistance in S. aureus.
Collapse
Affiliation(s)
- Ziyi Zhang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
3
|
Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev 2023; 87:e0003622. [PMID: 38047635 PMCID: PMC10732077 DOI: 10.1128/mmbr.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.
Collapse
Affiliation(s)
- Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
4
|
Fan L, Pan Z, Zhong Y, Guo J, Liao X, Pang R, Xu Q, Ye G, Su Y. L-glutamine sensitizes Gram-positive-resistant bacteria to gentamicin killing. Microbiol Spectr 2023; 11:e0161923. [PMID: 37882580 PMCID: PMC10715002 DOI: 10.1128/spectrum.01619-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) infection severely threatens human health due to high morbidity and mortality; it is urgent to develop novel strategies to tackle this problem. Metabolites belong to antibiotic adjuvants which improve the effect of antibiotics. Despite reports of L-glutamine being applied in antibiotic adjuvant for Gram-negative bacteria, how L-glutamine affects antibiotics against Gram-positive-resistant bacteria is still unclear. In this study, L-glutamine increases the antibacterial effect of gentamicin on MRSA, and it links to membrane permeability and pH gradient (ΔpH), resulting in uptake of more gentamicin. Of great interest, reduced reactive oxygen species (ROS) by glutathione was found under L-glutamine treatment; USA300 becomes sensitive again to gentamicin. This study not only offers deep understanding on ΔpH and ROS on bacterial resistance but also provides potential treatment solutions for targeting MRSA infection.
Collapse
Affiliation(s)
- Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Xu Liao
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingqiang Xu
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Tao JJ, Li SH, Wu JH, Peng XX, Li H. pts promoter influences antibiotic resistance via proton motive force and ROS in Escherichia coli. Front Microbiol 2023; 14:1276954. [PMID: 38029124 PMCID: PMC10661408 DOI: 10.3389/fmicb.2023.1276954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Glucose level is related to antibiotic resistance. However, underlying mechanisms are largely unknown. Methods Since glucose transport is performed by phosphotransferase system (PTS) in bacteria, pts promoter-deleted K12 (Δpts-P) was used as a model to investigate effect of glucose metabolism on antibiotic resistance. Gas chromatography-mass spectrometry based metabolomics was employed to identify a differential metabolome in Δpts-P compared with K12, and with glucose as controls. Results Δpts-P exhibits the resistance to β-lactams and aminoglycosides but not to quinolones, tetracyclines, and macrolide antibiotics. Inactivated pyruvate cycle was determined as the most characteristic feature in Δpts-P, which may influence proton motive force (PMF), reactive oxygen species (ROS), and nitric oxide (NO) that are related to antibiotic resistance. Thus, they were regarded as three ways for the following study. Glucose promoted PMF and β-lactams-, aminoglycosides-, quinolones-mediated killing in K12, which was inhibited by carbonyl cyanide 3-chlorophenylhydrazone. Exogenous glucose did not elevated ROS in K12 and Δpts-P, but the loss of pts promoter reduced ROS by approximately 1/5, which was related to antibiotic resistance. However, NO was neither changed nor related to antibiotic resistance. Discussion These results reveal that pts promoter regulation confers antibiotic resistance via PMF and ROS in Escherichia coli.
Collapse
Affiliation(s)
- Jian-jun Tao
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-hua Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-han Wu
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Litai Pharmaceutical Co. LTD, Jieyang, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Xiang J, Wang SW, Tao Y, Ye JZ, Liang Y, Peng XX, Yang LF, Li H. A glucose-mediated antibiotic resistance metabolic flux from glycolysis, the pyruvate cycle, and glutamate metabolism to purine metabolism. Front Microbiol 2023; 14:1267729. [PMID: 37915850 PMCID: PMC10616527 DOI: 10.3389/fmicb.2023.1267729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Bacterial metabolic environment influences antibiotic killing efficacy. Thus, a full understanding for the metabolic resistance mechanisms is especially important to combat antibiotic-resistant bacteria. Methods Isobaric tags for relative and absolute quantification-based proteomics approach was employed to compare proteomes between ceftazidime-resistant and -sensitive Edwarsiella tarda LTB4 (LTB4-RCAZ and LTB4-S, respectively). Results This analysis suggested the possibility that the ceftazidime resistance mediated by depressed glucose is implemented through an inefficient metabolic flux from glycolysis, the pyruvate cycle, glutamate metabolism to purine metabolism. The inefficient flux was demonstrated by the reduced expression of genes and the decreased activity of enzymes in the four metabolic pathways. However, supplement upstream glucose and downstream guanosine separately restored ceftazidime killing, which not only supports the conclusion that the inefficient metabolic flux is responsible for the resistance, but also provides an effective approach to reverse the resistance. In addition, the present study showed that ceftazidime is bound to pts promoter in E. tarda. Discussion Our study highlights the way in fully understanding metabolic resistance mechanisms and establishing metabolites-based metabolic reprogramming to combat antibiotic resistance.
Collapse
Affiliation(s)
- Jiao Xiang
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi-wen Wang
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Tao
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing-zhou Ye
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Liang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Litai Pharmaceutical Co., Ltd., Jieyang, China
| | - Li-fen Yang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|